Chapter 1

Computationally Efficient Clustering of
Audio-Visual Meeting Data

Hayley Hungd, Gerald Friedlani and Chuohao Yeb

Abstract This chapter presents novel computationally efficientialyms to extract

semantically meaningful acoustic and visual events reél&tecach of the partici-
pants in a group discussion using the example of businesngeecordings. The
recording set-up involves relatively few audio-visualsais, comprising a limited
number of cameras and microphones. We first demonstratewtatignally efficient

algorithms that can identify who spoke and when, a problerspi@ech process-
ing known as speaker diarization. We also extract visualiacteatures efficiently

from MPEG4 video by taking advantage of the processing tlest already done
for video compression. Then, we present a method of asgugidite audio-visual

data together so that the content of each participant canamaged individually.

The methods presented in this article can be used as a mirmmponent that
enables many higher-level semantic analysis tasks neadsshich, retrieval, and
navigation.

With the decreasing cost of audio-visual sensors and thelalement of many
video-conferencing systems, a growing trend for creatmgjrumented meeting
rooms could be observed. As well as aiding teleconferensimch meeting rooms
could be used to record all meetings as a tool for staff tngimind development or
to remind them of certain agenda items that were discussgdn@e number of
meetings that occur for a single person or even a work gragording and stor-
ing meetings alone would not be useful unless they could &eked and browsed
easily later.

In this chapter, we discuss ways in which we can move towalsse of instru-
mented meeting rooms while also minimizing the amount ofi@wdual sensors,
thus enabling fast set-up and portability; We show expemisieo cluster the audio
and visual data of each person where only one microphonevemd¢dmeras are
used to record the group meetings. From this, we present atatipnally-efficient
algorithms for extracting low-level audio and video feairThe chapter is divided
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into sections describing firstly the general challengefefrheeting room scenario
and what types of applications have been proposed. Thengs@ille the related
work on audio-visual speaker segmentation and localiaticGection 1.1. In Sec-
tion 1.2, we describe the overall approach that is presentdis chapter. Then, we
describe the audio-visual sensor set-up that we used iwatad our algorithms
in Section 1.3. Next, we describe how speakers and theirtking patterns are
extracted using an on-line speaker diarization algoritSet{ion 1.4). Then, in Sec-
tion 1.5 we describe how visual activity from individualsnche extracted from
compressed-domain features and compare this to convahpol- domain pro-
cessing. In Section 1.6, we describe a method of associatidip-visual data and
present bench-marking results. We conclude in Sectionrid8discuss the future
challenges.

1.1 Background

Clustering audio-visual meeting data can involve the giogipf events on different
levels. From the coarsest level, we may want to group theradas date, location
or which work-group participated. If we increase the granity, we observe events
within a single meeting such as the types of activities tbektplace. Increasing
the granularity further, each activity consists of a cosaépn type (ranging from
monologue to discussion) where speech turn-taking eveciss. For each speech
event, there are also accompanying motion features suclmnes af the head, that
might accompany a statement of agreement. We can go furthgmanularity by
observing each speech utterance such as separation interpbs. The motion can
be organized based on the types of motion that occur suchethertit is an upward
or downward motion.

Like any data mining task, our ultimate obstacle in creatingystem that can
cater completely to our searching and browsing needs isrtfi#@gm of theSeman-
tic Gap. The semantic gap is defined as the difference between thétivegep-
resentation of some data compared to what can be extractediis of its digital
representation. In this chapter, we concentrate on dis@yksw audio-visual meet-
ing data can be clustered by who spoke when and where. Theagipwe present
here, consists of two tasks. The first clusters audio datdoashow many speakers
there are and when they speak. Semantically, this is not soimgful since we only
know that there are N speakers and when they spoke but we ldmwt who each
speaker was. The second task takes these speaker clustédgmatifies where they
are in a set of video streams by associating the clustered aiiith video features,
which can then be used to show the corresponding speakdrs atlevant time.
This step already closes the semantic gap in terms of fingiegkers and when
they spoke and provides audio and video footage of how a speakivered a line.

Historically, speaker diarization has been a useful toottie speech processing
community since once the speakers have been identifiednatitospeech recog-
nition (ASR) can be applied to the utterances and attribtdedparticular person.
There are many who believe that closing the semantic gamkielved processing
speech in terms of its verbal content. From a linguistic yeint, this seems to be
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the natural choice if we wish to extract the verbal contenbét is being said so

that interactions can be analyzed semantically. Howeulewemantics are closely
related to verbal cues, meaning can also be extracted franvedal features. In

some cases, the non-verbal cues can be a better indicate séntiment of the de-
livery of a phrase. A common example would be the use of saredsere someone
may say “yes” when they actually mean “no”. Analyzing thebarcontent alone

would provide us with the incorrect interpretation of thessege but looking at the
non-verbal cues, we might see that the delivery containelibdeatures that are
more highly correlated with disagreement.

Practically speaking, systems that can automaticallyyaeahudio-visual data
using ASR and computational linguistics face many chalsnén natural speech,
people do not always speak in perfect sentences and maygtihreenselves, change
topic, talk over each other or complete each other’s serteriypically ASR algo-
rithms are plagued with challenges such as variations iargcoverlapping speech,
and differences in delivery of the same word from the samsaguewhich can de-
pend on the preceding and following words), errors from cteté words which
are out of vocabulary, or inaccurate language models. Tate-sff-the art word er-
ror rate (WER) using distant microphones is around 25% uslioge-talk head-set
microphones and around 40% using a distant ( 0.5m) micropsonrce [29]. In
terms of computational linguistics, analyzing dialog gtie aim of the utterance
e.g. agreement, disagreement, knowledge transfer), stigatian, topic detection
or the sentiment of what was said based on the ASR output ¢adirce further
errors into the system chain. This is particularly problémih the content of the
exchanges are to be used for the analysis of higher semaniiepts from the data.

Analyzing or identifying these higher semantic conceptsgjoeyond the tradi-
tional meeting browsing technologies that can be used tmate/between changes
in topic in a conversation or simple functions just as skigghrough a video every
5 minutes. Being able to analyze a meeting by its social rexbal content takes
the potential of meeting browsing technology to a more tiveilevel for users.
Much of data mining and audio-visual clustering has beesmtécas a data-driven
problem but perhaps in the context of recorded meetings mupaiticular where
conversations are concerned, we must not overlook theestedilire of the non-
verbal behavior that is exhibited during these interadti¢ior example, it is known
that we move more than our mouths when we talk; we gestictdatemphasis or
to help us get our point across[43]. If our final goal is to bsewneeting data in
terms of social memory triggers, can the patterns of nobaldsehavior seen in
social interactions be used to cluster the data too? Thabidd aspects of non-
verbal behavior during conversations provide us a simpte@actical solution to
this problem? Recent work on estimating behavioral conttrsuch as find who is
dominant [35], the personality of participants [52] or whalies people have [20]
suggest that using automatically extracted non-verba caa be effective.

For meetings in a natural setting, we expect to see mostlgnstained conver-
sations. Natural conversation in meetings involve manyofacthat are generally
unwanted in a clean test scenario. The first is overlaps errintions in speech.
Traditional data-sets [50] that are used to test audioavisynchrony algorithms
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assume that only one person speaks at a time. In more comases,cone per-
son mouths words not corresponding to the associated aedigcence in order to
confound simpler synchrony algorithms. Others contairjesiib reciting digits si-

multaneously. However, in all cases, the speech is notaladad test data in such
conditions do not reflect the majority of circumstances inchtpeople find them-

selves talking.

Other aspects of real conversations involves natural boolyements. In natu-
ral conversations, people move to aid emphasis of what thegaying, provide
feedback for others and regulate their gaze patterns taueage a smooth flow of
conversation between conversants [43, 30]. Promising waskbeen presented to
take advantage of the correlation between more holistig/ odtion and speech
[59, 60, 32, 31]. Such methods have shown a relationship degtvglobal body
motion and speech over longer term sequences. The expésip@sented in this
chapter, continues in this direction, exploring the extentshich we can use find-
ings in the psychology literature to address the audioalislustering problem in
meetings more directly for constructing a plausible pcadtapproach to the prob-
lem of speaker localization. For the remainder of this sective will discuss firstly
the general challenges faced with organizing meeting ddten we will concen-
trate the discussion on related work on speaker diarizatiahon audio-visual syn-
chrony, related to speech and finally some background onttim{js in psychology
on audio-visual synchrony during conversations.

1.1.1 Challenges in Meeting Analysis

Organizing audio-visual meeting data involves using mafigreént sorting criteria.
For now, let us concentrate on scenarios where all the ceamnts are co-located
so that interactions can occur face-to-face. Even unddr siicumstances where
acoustic and lighting conditions can be controlled, theeesill considerable chal-
lenges that can be addressed in a multi-disciplinary doffinaim signal processing,
to computer vision, linguistics, and human-computer gxtéon.

Activities in meetings consist mainly of conversations mteractions between
the participants. Within meetings, people can communiagtte each other in dif-
ferent permutations and at different times. They can tallc @ach other, have sub-
conversations, be involved in multiple conversations atshme time, and can pro-
vide verbal as well as non-verbal signals to others. In soases the verbal and
non-verbal delivery of a message can be contradictory.

As well as investigating group conversational dynamich@work place from
a psychological perspective [6, 49, 17], work has been dorties domain of com-
putational modeling [40, 48, 2, 54]. Due to European projeitiatives, the com-
putational modeling of meetings has been considered instefneither visual or
audio-visual segmentation of the group activities as disicuns, monologues, note-
taking, presentations or writing on a white board from theltMdodal Meeting
Manager Corpus (M4) (http://www.idiap.ch/mmm/corpordfoorpus/) [40, 2, 54]
where the meetings were scripted so each meeting activiyttas times of exe-
cution were predetermined. The main problem with approagthieeting analysis
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from this perspective is that in reality, it is very difficiitt objectively label mono-
logues, dialogues, discussions, or presentations. Fon@eaif someone is giving
a presentation and someone else asks a question, whiclatdlynteads to a dis-
cussion, then is the current scenario a presentation ocagdijmn? The answer lies
in the interval over which the judgment is made or the tempooatext which is
applied. Therefore, depending on whether the judgment tenoa a fine-grained
time scale or a longer time scale, the judgment of the scean also be different.
Since the M4 corpus, new audio-visual meeting data (AugeteMultiParty In-
teraction (AMI) corpus http://www.idiap.ch/mmm/corptami) has been recorded,
where the scripting part of the scenario was removed. In materal meeting sce-
narios, people do not cut from doing a presentation to a don or a monologue
necessarily so annotating these meetings in terms of ngegstiions is not practical.

With this in mind, it is probably easier to extract semaritjceneaningful fea-
tures which are easier to evaluate. The problem with anadymieeting actions is
that labeling is strongly dependent on the temporal conRather than examining
temporal intervals of time, we can also segment based orteseanh as a change
of speaker or when someone starts or stops speaking. Suahtarseous events are
much less ambiguous to label. This can be done by either bfresespeech detec-
tion for cases where each person has their own microphohe[68ing speaker di-
arization if a single microphone cannot be directly asgediavith a single speaker.

If we are able to cluster the audio and video information opeaker, we can
begin to analyze more complex behaviors such as who resgorvdsom. Analy-
sis of turn-taking patterns in discussions can be quite plalvir indicating who
is dominant [35] or what roles people play in a meeting [20, 84ith an audio-
visual clustering method we could automatically obtainhbitie audio and video
information for the project manager for a meeting, for exlEam@iven that the dis-
cussion above has established that it is easier to analyegngs in terms of these
turn-taking events, we provide a background review of spediarization. In ad-
dition, we provide a review of work on the audio-visual asation of speakers so
that some semantic meaning can be associated with the spélas&eare identified.
Finally, we provide some background information about hasnman body motions
are related to speech during conversations.

1.1.2 Background on Speaker Diarization

The goal of speaker diarization is to segment audio intolsge@omogeneous re-
gions with the ultimate goal of answering the question “wpolke when?” [55].
While for the related task of speaker recognition, modedsrained for a specific set
of target speakers which are applied to an unknown test spéakacceptance (the
target and test speaker match) or rejection (mismatchpealer diarization there
is no prior information about the identity or number of theakers in the recording.
Conceptually, a speaker diarization system thereforeopad three tasks: First, dis-
criminate between speech and non-speech regions (spet@gty aletection); sec-
ond, detect speaker changes to segment the audio data;gioup the segmented
regions together into speaker-homogeneous clusters.



6 Hayley Hung, Gerald Friedland, and Chuohao Yeo

Some systems combine the two last steps into a single ongegmentation and
clustering is performed in one step. In the speech commudiffgrent speaker di-
arization approaches have been developed over the yeag.Clim be organized
into either one-stage or two-stage algorithms, metriedaand probabilistic sys-
tems, and either model-based or non-model-based systems.

Many state-of-the-art speaker diarization systems, useesastage approach, i.e.
the combination of agglomerative clustering with Bayediafiormation Criterion
(BIC) [12] and Gaussian Mixture Models (GMMs) of frame-bdspstral fea-
tures (MFCCs) [55] (see Section 1.4). Recently, a new spediistering approach,
which applies the Ng-Jorden-Weiss (NJW) spectral clusgeaigorithm to speaker
diarization is reported [45].

In two-stage speaker diarization approaches, the first (Siegaker segmenta-
tion) aims to detect speaker change points and is essgrdidio-way classifi-
cation/decision problem, i.e., at each point, a decisiorwbsther it is a speaker
change point or not needs to be made. After the speaker clategtion, the speech
segments, each of which contains only one speaker, are tstered using either
top-down or bottom-up clustering.

In model-based approaches, pre-trained speech and siteoaels are used for
segmentation. The decision about speaker change is maeéd basrame assign-
ment, i.e. the detected silence gaps are considered to lspélaéer change points.
Metric-based approaches are more often used for speakeeségtion. Usually, a
metric between probabilistic models of two contiguous shegegments, such as
GMMs, is defined and the decision is made via a simple threghpprocedure.

Over the years, research has concentrated on finding mgtrispeaker change
detection. Examples are the Bayesian Information Critef®2IC) [12], cross BIC
(XBIC) [36][4], Generalised Likelihood Ratio (GLR) [18], i€h distance [26],
Kullback-Leibler distance (KL) [9], Divergence Shape Riste (DSD) [39]. A
more detailed overview can be found in [3]. Newer trendsuidelthe investigation
of new features for speaker diarization, such as [24], [6&§ novel initialization
methods.

1.1.3 Background on Audio-Visual Synchrony

So far, the speaker diarization system provides some miteof speech associated
with a single person but we do not have information about vy look like or
how the message was delivered non-verbally. This can be lop@associating the
audio streams with the correct video stream by identifying@xploiting the syn-
chrony between the two modalities. Alternatively, soundrse localization from
video can be used to tackle a similar problem. Most compartatimodeling has
involved identifying one or two people in a single video caaenly where short
term synchrony of lip motion and speech are the basis foroauvidual localization.
Audio-visual synchrony or sound source localization carcbesidered a task in
itself. However, both these tasks could be combined andteeerk has started to
consider both speaker diarization and localization asglessudio-visual task.
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Common approaches to audio-visual speaker identificatieolve identifying
lip motion from frontal faces [46], [47], [13], [22], [21],53], [57], [58]. There-
fore, the underlying assumption is that motion from a speetmes predominantly
from the motion of the lower half of their face. This is furtieforced by artificial
audio-visual data of short duration, where only one pergeaks. In these scenar-
ios, natural conversation is not possible so problems wirlapping speech are
not considered. In addition, gestural or other non-verlalviors associated with
natural body motion during conversations are artificiallpgressed [50].

Nock et al.[46] presents an empirical study to review daéing of audio-visual
synchrony and examine their empirical behavior. The requibvide justifications
for the application of audio-visual synchrony techniqueshte problem of active
speaker localization in the more natural scenario of brasideideo. Zhang et al.
[69] presented a multi-modal speaker localization metrsidgia specialized satel-
lite microphone and omni-directional camera. Though tiselts seem comparable
to the state-of-the-art, the solution requires specidlimdware, which is not desir-
able in practice. Noulas et al. [47] integrated audio-Vigegtures for on-line audio-
visual speaker diarization using a dynamic Bayesian nét@BN) but tests were
limited to two-person camera views. Tamura et. al. [58] dest@te that the dif-
ferent shapes the mouth can take when speaking facilitades rgcognition under
tightly constrained test conditions (e.qg., frontal pasitdf the subject with respect
to the camera while reading digits).

The approaches discussed above were often tested on vetgdlichata sets
(which are not always publicly available) and were ofterorded in highly con-
strained scenarios where individuals were unable to movallonaturally. In gen-
eral, the speakers face the camera frontally and do not tedk ar interrupt each
other. In contrast to previous methods which combine audib\adeo sources in
the early stages of the speaker diarization process, wemtragate fusion approach
where noisy video streams are associated with estimatedgkepehannels.

In terms of finding speakers in conversational settings whigteo data does not
capture high-resolution faces, Vajaria et al. [59, 60] wibe first to consider the
global body motion could be synchronous with speech. Theggnted a system
that combines audio and video on a feature-level using eigetor decomposition
of global body motion. Hung et al. [31] developed this nofiorther by considering
how simple motion features could be used to identify spesikevideo streams for
group discussions. Finally Campbell and Suzuki [10] anedygpeech and upper
torso motion behavior in meetings to study participatiaels but did not go further
into evaluating how well speech and motion could be coreelat

1.1.4 Human Body Motions in Conversations

In contrast to much previous work in this area, we have fohatrelying on lip mo-
tion to identify speakers is not always necessary and isinatyg possible [32, 31].
In the psychology literature, it has been shown on many dacashat speaker and
also listener movements are directly related to the rolg fiay in a conversation



8 Hayley Hung, Gerald Friedland, and Chuohao Yeo

[37, 43]. We will explore this in more detail here to show teath non-verbal cues
play a huge role in understanding and inferring behavioe$yip conversations.

In social psychology, human body movements in conversatiame been studied
from different perspectives. The first looks at the movemmehispeakers, the sec-
ond, at the movement of listeners, and the final considersythehrony between the
movements of speakers and listeners. The first two are irupioidr understanding
what differentiates speakers from listeners in terms oésiim behavior while the
third is used more to measure the degree of mutual engagdragmeen conver-
sants. The latter is beyond the scope of this paper but méaédsiean be found in a
critique of work on interactional synchrony by Gatewood &usenwein [25].

The first aspect involving the movement of speakers suggestspeakers ac-
company their speech with gestures [43, 37]. Gestures guaioying speech them-
selves have been classified in many different ways. Adam #&elgfined gesture
asa

“range of visible bodily actions that are ... generally relgal as part of a person’s willing
expression.” (p 49).

The reason for gesturing has been explained as a means e&smg precision
[43, 27], an evolutionary origin of language [38], or as ad & speaking to fa-
cilitate lexical retrieval [42, 43]. Whatever the reason fiooving when speaking,
psychologists are in agreement that we definitely move a eurabbody parts
when we speak. Moreover, it was noted by Gatewood and Rosentivat “normal

human beings exhibit remarkable integration of speech adg lotion at the sub-
second time scale.” (p13, [25]). Such a phenomenon wasddlaal ‘self synchrony’
by Condon and Ogston [15] who later elaborated that,

“As a normal person speaks, his body ‘dances’ in precise adered cadence with the
speech as it is articulated. The body moves in patterns afgehwhich are directly propor-
tional to the articulated pattern of the speech strearherd are no sharp boundary points
but on-going, ordered variations of change in the body whighisomorphic with the or-
dered variations of speech” (p153) [16].

Gestures that accompany speech can be divided into a nurhbifeoent cat-
egories involving manipulation of facial features, headeyahe trunk (or upper
torso), arms, shoulders and hands. Hadar et al. found tloait ahd rapid head
movements can accompany points of stress in a sentence esa ppeaks [27]. In
addition, Hadar et al. also found that the frequency of l¢irggar movements of the
head was correlated with a person’s speaking time in a ceatien [28]. In larger
groups, speakers can also move their head to address alttigigants. Depend-
ing on the person’s status within the group, their level of@sant monitoring can
vary [19].

Hand motions have been shown to be very related to the caiteritat is being
said; it has been suggested by Armstrong et al. that,

“Most gestures are one to a clause, but when there are sivecésatures within a clause,
each corresponds to an idea unit in and of itself. . . Eacluge# created at the moment of
speaking and highlights what is relevant. ..” (p 40-41) [5].
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McNeill called such gestures ‘spontaneous’ where “theianieg is determined
on-line with each performance.” (p 67) [43] and identifiedifdypes of relation-
ships between spontaneous gestures and speech; iconaphugt, beat, and ab-
stract deictic. Iconic gestures represent objects andeweterms of resemblance;
metaphoric gestures represent an abstraction; beatésatue rhythmic movements
of the hand such as for counting or indexing a list; and absttaictics represent
locations of objects within a gesture space [43].

The listener in a conversation can, provide feedback tofikalser, indicate that
they wish to claim the floor, or indicate their interest in aeersation. It was found
by Hadar et al. [27] that listener's head movements tendéavtve more “linear
and expansive” movements when indicating that they wardespéak, “symmet-
ric and cyclic” when providing simple feedback such as ‘yes*no’ responses,
and “linear but with shorter movements” during pauses irotiwer’s speech, which
could be attributed to ‘synchrony’ behavior between cosagts. While speaker’s
movements tend to be more pronounced, the movements ofdistare less pro-
nounced but still observable. Harrigan found that body musats occurred more
frequently when a person was requesting a turn than durmgiitidle of someone
else’s speaking turn [30], showing that listeners tend toerless. She also found
that hand gestures tended to precede a turn compared toafdetdsponses that
were observed from motion from the head such as nods, shald#ts, facial ex-
pressions and shoulder shrugs. In particular, gesturestfie hands were related to
speech, serving to accent or emphasize what was being said.

1.2 Approach

c Online Speaker-
only

i i Audio Speak (k) AV Association
Sl o @ @ Dtija.!i(;atﬁ,e: er c Offline Everyone
Source N

(c) Activity (d) Activity ™

Localization Representation \]

c 4 close cameras c Raw with adaptive

c 2side cameras | | normalisation

¢ Head/Hand c Binary estimates of
localization speaker from video

Multiple
Cameras

8L P Tl o {

Speaker clusters anc
video locations
Fig. 1.1 Figure showing our approach. The work consists of two sta@@ssolving the task of
‘who is speaking now?’ based on audio information only; (b¥axiating speakers with video
streams. Different types of video features (c-d) are usesht@mnce the practicality, and perfor-
mance of the system.

Compressed Domain Video Processing

Figure 1.1 shows a flow diagram of the approach that we haea fak clustering
the audio-visual meeting data in terms of who spoke when dretevthey are. The
goal of the presented system is to identify speakers andapproximate locations
in multiple camera streams, in an on-line and real-timeitasiWe perform exper-
iments with four-participant meetings for cases wheredlaee either four cameras
(one for each person), or two cameras (two people are shoncapgera). A sum-
mary of the approach is listed below.
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(a) On-line real-time speaker diarization Speaker clusters are generated using the
audio data to represent each speaker and when they speakttisounsupervised
data-driven method, a set of speaker clusters are genevatze it is assumed that
one speaker corresponds to one cluster.

(b) Audio-visual association of speakers streams and videtsing these speaker
clusters, audio-visual association with a set of videoastre is performed so that
the video or approximate spatio-temporal location of a kpeaan be found from
multiple cameras. We carried out experiments showing véretlis possible to as-
sociateall participants to their audio source correctly in a batch nreaand how the
performance degrades as the length of the meeting is sledrtés the window size
gets smaller, the likelihood of more than 1 person speakiitiginvthe same time
interval is greatly reduced so we finally carried out expernts on selecting and
evaluating whethgust the speakewas associated with the correct video stream.
(c-d) Extraction of visual activity features : The video features themselves are
computed in the compressed domain to take advantage ofgziagehat is already
required for the video compression process. Using thesertss it is possible to do
some spatial video-processing in order to identify the tioce of two participants
in video streams. We try using different sets of cameras tb tepresent and local-
ize speakers in the meeting. Finally, to improve local@aperformance, we tried
creating a binary representation of each person’s visualitgcwhich generated a
cleaner signal than the original raw features used.

1.3 The Augmented MultiParty Interaction (AMI) Corpus

Fig. 1.2 All available views in the data set.

One of the largest corpora of meeting room data has beendeddy the Aug-
mented MultiParty Interaction (AMI) corpus which was cesabut of a European
Union funded project [11]. This initiative generated a agphat contains both 100
hours of audio-visual data and annotations from semaltit@h-level features,
such as who is speaking to, more semantically meaningfuteqms, such as di-
alogue acts or who is looking at whom. In each meeting, foutiggpants were
grouped together and were asked to design a remote conttiobd®ver a series of
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sessions. Each person was assigned a role such as “Projeaghtd, “Marketing
Expert”, or “Industrial Designer”. A microphone array amdif cameras were set in
the center of the room. Side and rear cameras were also nitordapture different
angles of the meeting room and its participants, as showiginé& 1.2.

Each camera captures the visual activity of a single seeaetitipant, who is
assigned a seat at the start of each meeting session. pantEare requested not to
change seats during the session. No other people entevertleameeting during
the session so there are always only 4 interacting partitsp&ach person also
wore a headset and a lapel microphone. A plan view of the mgeetiom is shown
in Figure 1.3.

N Right CameranLLapel Microphone|
8.2
g T = 0 27| |Close-view|
2 E camera
(o]
Bl ¢
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B 53 s
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Fig. 1.3 Plan of the experimental meeting room.

1.4 Audio Speaker Diarization

1.4.1 Traditional Offline Speaker Diarization

As previously explained in Section 1.1, the goal of speakarizhtion is answer-
ing the question “who spoke when?”. The following sectiotlioas the traditional
audio-only speaker diarization approach as shown in Fitjure

Feature Extraction Wiener filtering is first performed on the audio channel for
noise reduction. The HTK toolKitis used to convert the audio stream into 19-dim-
ensional Mel-Frequency Cepstral Coefficients (MFCCs) Whie used as features
for diarization. A frame period of 10 ms with an analysis womdof 30 ms is used
in the feature extraction.

Speech/Non-Speech Detectiofhe speech/non-speech segmentation [64] proceeds
in three steps. At each step, feature vectors consistin@ dflECC components,
their deltas and delta-deltas (approximations of first awbsd order derivatives),
and zero-crossings are used.

In the first step, an initial segmentation is created by mgrhe Viterbi algo-
rithm on a Hidden Markov Model (HMM) with Gaussian Mixture el (GMM)
emissions that have been trained on Dutch broadcast neawsalstgment speech
and silence. In the second step, the non-speech regionplérat® two clusters:

1 http://htk.eng.cam.ac.uk/
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regions with low energy and regions with high energy. A ned separate GMM is
then trained on each of the two new clusters and on the spegnr The number
of Gaussians used in the GMM is increased iteratively anseggmentation is per-
formed in each iteration. The model that is trained on audib thigh energy levels
is added to the non-speech model to capture non-speecsslikals such as music,
slamming doors, paper rustling, etc. In the final step, tleesh model is compared
to all other models using the Bayesian Information Crite(iBIC). If the BIC score
is positive, the models are added to the speech model.

Audio Signal

Feature
Extraction
Dlanz.atlon "who spoke when"
MFCC MFCC Engine
* (only Speech)
Speech/Non- :
Speech Detector

Fig. 1.4 Block diagram illustrating the traditional speaker diatian approach: As described in
Section 1.4, an agglomerative clustering approach corslipeaker segmentation and clustering
in one step.

Speaker Segmentation and Clusteringn the segmentation and clustering stage of
speaker diarization, an initial segmentation is first gatest by randomly partition-
ing the audio track int& segments of the same lengkhs chosen to be much larger
than the assumed number of speakers in the audio track. Feimge data, we use
k = 16. The procedure for segmenting the audio data takes tlogvfob steps:

1. Train a set of GMMs for each initial cluster.

2. Re-segmentation: Run a Viterbi decoder using the cuseinof GMMs to seg-
ment the audio track.

3. Re-training: Retrain the models using the current segatien as input.

4. Select the closest pair of clusters and merge them. THisris by going over all
possible pairs of clusters, and computing the different¢e/den the sum of the
Bayesian Information Criterion (BIC) scores of each of thedels and the BIC
score of a new GMM trained on the merged cluster pair. The@lsgrom the
pair with the largest positive difference are merged, the &M is used and
the algorithm repeats from the re-segmentation step.

5. If no pair with a positive difference is found, the algbrit stops, otherwise the
algorithm repeats from step 2.

A more detailed description can be found #.[

The result of the algorithm consist of a segmentation of thdiatrack withn
clusters and an audio GMM for each cluster, wheie assumed to be the number
of speakers.
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The computational load of such a system can be decomposethigte com-
ponents: (1) find the best merge pair and merge; (2) modehneitig and re-
alignment; (3) other costs. After profiling the run-timetdisution of an existing
speaker diarization system, we find that the BIC score catiicul takes 62 % of the
total run-time.

Analyzing how the best merge hypothesis is found, the refmothe high cost
of the BIC score calculation can be identified. I2{ and Dy, represent the data
belonging to clustea and clusteb, which are modeled by, and6,, respectively.
D represents the data after merganandb, i.e.D = D,UDy, which is parameterized
by 6. The Merge Score (MS) is calculated as Eq. (1.1) [1]:

MS(6s, 6) = logp(D|6) — (log p(Da|a) + logp(Dp|6h)) (1.1)

For each merge hypothesiendb, a new GMM @) needs to be trained. When the
system is configured to use more initial clusters, whiché&grable for better initial
cluster purity, the computational load can become prakiéait

The speaker diarization output consists of meta-data ib@sgispeech segments
in terms of starting time, ending time, and speaker clusgenen This output is
usually evaluated against manually annotated ground segments. A dynamic
programming procedure is used to find the optimal one-tornapping between
the hypothesis and the ground truth segments so that tHeot@dap between the
reference speaker and the corresponding mapped hypatespeaker cluster is
maximized. The difference is expressed as DiarizationrHRate (DER), which
is defined by NIS¥. The DER can be decomposed into three components: misses
(speaker in reference, but not in hypothesis), false aldsmsaker in hypothesis,
but not in reference), and speaker errors (mapped refeismue the same as hy-
pothesized speaker).

This Speaker Diarization System has competed in the NISTuatians of the
past several years and established itself well among sfatee-art systents

The current official score is 21.74 % DER for the single-mptrone case (RTO7
evaluation set). This error is composed of 6.8 % speechséperech error and 14.9 %
speaker clustering error. The total speaker error incladleimcorrectly classified
segments, including overlapped speech. NIST distingsisfetween recordings
with multiple distant microphones (MDM) and recordingstwiine single distant
microphone (SDM). In the case of MDM, beam-forming is tyflic@erformed to
produce a single channel out of all available ones.

For our approach, the various experimental conditionswheatised can be cat-
egorized into a single distant microphone case and a ingiidlose-talk micro-
phone. For the first case, a single audio stream was createtxyy individual
close-talk microphone data, i.e. ‘Mixed Headset’ or ‘MiXeapel’ using a summa-
tion. For the latter condition, a single microphone wasdelt from a microphone
array from either the table or ceiling sources.

2 http://nist.gov/speech/tests/rt/rt2004/fall

3 NIST rules prohibit publication of results other than ourmowlease refer to the NIST website
for further information: http://www.nist.gov/speeclsts/rt/rt2007



14 Hayley Hung, Gerald Friedland, and Chuohao Yeo

1.4.2 Online Speaker Diarization

Our first goal is to segment live-recorded audio into speakenogeneous regions
to answer the question ‘who is speaking now?’. For the systemork live and
on-line, the question must be answered on intervals of cagtaudio that are as
small as possible, and performed in at least real-time. Thkne speaker diariza-
tion system has been described in detail in [62] and has temss{) training and
(i) recognition, which will be described in more detail in th#sequent sections.

Unsupervised Training:

Audio Signal

Feature
~ Extraction

Features Features

‘ only Speech)
Speech/Non-
‘Speech Detector

Online Recognition:

2s Feature ‘ Supervised
Audio - Extraction Classification

Segmented speaker clusters
(Who is speaking now?)

Fig. 1.5 Summary of the on-line audio diarization algorithm.

Unsupervised Bootstrapping of Speaker ModelsTo bootstrap the creation of
models, we use the speaker diarization system proposed bteY¥eet al. [64] which
was presented in Section 1.4.1 in the first meeting of eadicsesThis also results
in an estimation of the number of speakers and their assaciEieaker models.
Once models have been created, they are added to the po@akespnodels and
can be reused for all subsequent meetings. The speakeratiian system used for
training is explained as followSpeaker Recognitiorin recognition mode, the sys-
tem records and processes chunks of audio as follows. Eggstral Mean Subtrac-
tion (CMS) is implemented to reduce stationary channekisfgs6]. While some
speaker-dependent information is lost, according to opegrents performed, the
major part of the discriminant information remains in theporally varying signal.
In the classification step, the likelihood for each audiorfeais computed against
each set of Gaussian Mixtures obtained in the training $tepm our previous ex-
periments on larger meeting corpora, [62], we decided tawsesecond chunks of
audio. This introduces a latency of about 2.2 seconds dftepérson has started
talking (recording 200 audio frames at 10 ms intervals plpg@essing time of 0.1
x real time).

The decision on whether a segment belongs to a certain spmake non-speech
model is reached using majority vote on the likelihoods cdiadio frame belonging
to a GMM. If the audio segment is classified as speech, we cmtpha winning
speaker model against the second best model by computitigehieood ratio. We
use this as an indicator of the confidence level. In our erpanis, we assume that
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there are speaker models for all possible speakers so weheshijhest confidence
level to indicate the most likely speaker. For a more rdalisase, it is possible
to apply a threshold to the confidence level to detect an unkrepeaker but this
currently requires manual intervention.

A Note on Model Order SelectionOffline audio speaker diarization can lead to
more clusters than speakers since the method is data-drivitherefore cluster
merging stops depending on whether the BIC score is improvesiorsened by
merging two candidate clusters. Due to the robustness obodine speaker di-
arization algorithm, while more clusters than particigacan be generated in the
offline training phase, in the on-line stage, noisy or exémrs clusters have much
lower likelihoods, so they are never selected as likely kpemodels. We found in
our experiments that the number of recognized clusters lzaitdof actual partici-
pants were always equal.

Itis also important to note that the data that we use inclodegapping speech.
These periods are automatically ignored when the speakdelsmare generated
to ensure they remain as clean as possible. Work has beéadcaut to address
overlapping speech in offline diarization systems but imea second pass over
the diarized audio signal, which would not be feasible fooadine and real-time
system [8].

1.4.3 Summary of the Diarization Performance

As described earlier, the output of a speaker diarizatictesy consists of meta-
data describing speech segments in terms of start and eesl, taind speaker cluster
labels. NIST provides a measurement tool that uses a dyr@gcamming proce-
dure to find the optimal one-to-one mapping between the lngsi and the ground
truth segments so that the total overlap between the refergmeaker and the cor-
responding mapped hypothesized speaker cluster is madmihe difference is
expressed as Diarization Error Rate, which is also definelIBy*. The Diariza-
tion Error Rate (DER) can be decomposed into three compenergses (speaker
in reference, but not in hypothesis), false alarms (speakieypothesis, but not in
reference), and speaker errors (mapped reference is neaithe as hypothesized
speaker). Itis expressed as a percentage relative to #ideogth of the meeting.
To characterize the algorithm under increasingly noisyimgonditions, 3 dif-
ferent sources were used. Two signals were obtained by gntkia four individual
headset microphones (MH) or lapel microphones (ML) usingre@ctlsummation.
Also a real far-field case (F) where a single microphone frioenarray on the table
was used. Table 1.1 shows the results for the on-line audidtion system where
the average, best and worse performances are shown for tthgisessions that
were used. As expected, one can observe a decrease in pemfzrias the SNR de-
creases. It was interesting to observe a high variation ifopeance where in one
case the error rate fell to 4.53% for the mixed headset condilf we observe the
variation in performance more closely, as shown in Figuée We see that there is
one particular meeting session which has a consistentigriqgrformance than the

4 http://nist.gov/speech/tests/rt/rt2004/fall
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Input Offline Results Online Results
Video Methods |F (21dB)|ML (22dB) |MH (31dB)|F (21dB)|ML (22dB) |MH (31dB)
Average DER(%) 33.16 36.35 36.16 18.26 26.18 28.57

Table 1.1 Diarization results in terms of the Diarization Error RaER) using both offline and
on-line methods. Note that the offline results were computgdg meetings of 5-minute length
while the on-line results were bootstrapped using longegtimgs but speaker models were pro-
duced from just 60s of speech from each person. Resultssrgeadsented using different micro-
phone sources where the associated signal to noise ragadbrsource is shown in brackets.

rest. This is because in this meeting, everyone stays sgatddherefore maintains
equidistance from the far-field microphone). In additidme meeting is mostly a
discussion and there is little use of the other equipmeitténmdéom such as the slide
screen or white board. In contrast, meeting 1S1006d is orteeofvorst perform-
ing meetings because people are often presenting at thehwhitd or slide screen.
It is also interesting to observe that while the relativefgenance when using the
far-field and headset microphones remain fairly consigteetfar-field case always
performs worse), the mixed lapel condition does not. Thisldde explained by
additional noise generated by shifting of the body or tongtthe microphone by
accident, particularly when participants were moving abthe meeting room.

—+—Farfleld
== =Mixed Lapel
—Mixed Headset||

! ! I ! ! !
15100003 IS1001a 1S1001b IS1001c 1S1003b 1S1003d IS1006b 1S1006d 1S1008a IS1008b IS1008c 1S1008d
Meeting

Fig. 1.6 Comparison of the on-line speaker diarization performaawess different input condi-
tions and over the different meetings that were considered.

1.5 Extracting Computationally Efficient Video Features

With the increased need for recording and storing video,datmy modern day
video cameras have hardware to encode the signal at theesdmiarder to capture
visual activity efficiently, we leverage the fact that magtvideos are already in
compressed form so that we can extract visual activity festat a much lower
computational cost.

These features are generated from compressed-domaimation such as mo-
tion vectors and block discrete-cosine transform coefiiisiéhat are accessible with
almost zero cost from compressed video [63]. As comparect@aing similar
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higher resolution pixel-based features such as optical tompressed domain fea-
tures are much faster to extract, with a run-time reductfd®b686 [67].

Video streams that have been compressed using MPEG4 egcoaiittains a
collection of group-of-picture (GOP) which is structureilwan Intra-coded frame
or I-frame while the rest are predicted frames or P-framigirE 1.7 summarizes
the various compressed domain features which can be eedreloeaply from com-
pressed video as thmotion vector magnitudésee Figure 1.7(b)) and thresidual
coding bitrate(see Figure 1.7(c)) to estimate visual activity level. Mativectors,
illustrated in Figure 1.7(d), are generated from motion pensation during video
encoding; for each source block that is encoded in a prediéishion, its motion
vectors indicate which predictor block from the referen@efe (in this case the
previous frame for our compressed video data) is to be usgucally, a predictor
block is highly correlated with the source block and henacsilar to the block to
be encoded. Therefore, motion vectors are usually a gooaxgippation of optical
flow, which in turn is a proxy for the underlying motion of obje in the video [14].

After motion compensation, the DCT-transform coefficiarithe residual signal
(the difference between the block to be encoded and itsgtredifrom the reference
frame) are quantized and entropy coded. Témdual coding bitrateillustrated in
Figure 1.7(c), is the number of bits used to encode this fioamed residual signal.
While the motion vector captures gross block translatiofajlis to fully account for
non-rigid motion such as lips moving. On the other hand, ésé&dual coding bitrate
is able to capture the level of such motion, since a tempdahge that is not well-
modeled by the block translational model will result in ddeal with higher energy,
and hence require more bits to entropy encode.

@) (b) (© (d)
Fig. 1.7 Compressed domain video feature extraction. (a) Origmage, (b) Motion vectors, (c)
Residual coding bit-rate, (d) skin-colored regions.

1.5.1 Estimating personal activity levels in the compregsimmain

Even when personal close-view cameras are used, the disteoro the camera
causes scale and pose issues, as shown in some examplenskigjsre 1.8. By

averaging activity measures over detected skin-colorkslowe hope to mitigate
some of these issues. Therefore we implement a block-lkirelc®lor detector that
works mostly in the compressed domain which can detect hedfi@nd regions as
illustrated in Figure 1.7. This is also useful for detectivigen each meeting partici-
pantis in view. To do this, we use a GMM to model the distribotf chrominance
coefficients [41] in the YUV color-space. Specifically, we aebthe chrominance



Fig. 1.8 Possible pose variations and ambiguities captured fromitle® streams.

coefficients,(U,V), as a mixture of Gaussians, where each Gaussian component

is assumed to have a diagonal covariance matrix. In the-fraraes of the video,
we compute the likelihood of observed chrominance DCT DGfaents accord-

ing to the GMM and threshold it to determine skin-color blec&kin blocks in the

Inter-frames are inferred by using motion vector inforrmatio propagate skin-color
blocks through the duration of the group-of-picture (GOP).

We threshold the number of skin-colored blocks in the clogedew to detect
when a participant is seated. If a participant is not detegtean image frame of
the close-up video stream, he is assumed to be presentihg ptdjection screen,
which is a reasonable assumption in the meeting data. Siegeare assumed to be
presenting at the slide screen or whiteboard, they are nialy ko be active and
also speaking. Therefore, a simple assumption was to setdgexhere the person
was detected as not seated, to the maximum value seen sdige.thhis is a simple
rule, it was found to be effective in previous experimenty [3

1.5.2 Finding personal head and hand activity levels

While previous work has concentrated on extracting pedsaeaal activity from
gross head motion, here we go a step further by trying to wtaed how head and
hand motion might play a part in human discourse, at a holistiel. The impor-
tance of this can be highlighted in Figure 1.9 where we olestitkee seconds of a
meeting discussion. There are four participants in theudision, in the configura-
tion shown in Figure 1.3. Here we see just two participantsrelthe person on the
right is speaking. The top two rows of Figure 1.9 shows a hiteak of the gross
head and hand motion that is observed for the two observetinggearticipants,
illustrated in the bottom row of the figure. To illustrate ttleange in motion over
time more clearly, the average motion vector magnitudes theehead and hand
skin regions are shown (further details about how these aoelated will be pro-
vided in the remainder of this section). The visual head atthactivity for the
silent participant on the left is shown in grey while the dp& visual activity is
shown in black. The bottom two rows of the figure shows someitkege frames
within the three second interval where the person on the isgdpeaking. She starts
off addressing those on the other side of the table and threcttyi addresses the
participant to the left half way through the observed ind&rWhen he realizes that
he is being addressed directly, he moves his head to facerketly but then low-
ers it again when attention is shifted away from him. In teohkand motion, we
see that the speaker is the only person of the two that mowésgdihis interval.
Note that in this paper, we describe head motion to be obddreen skin-color
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regions, which captures visual activity inside the face ali as some translations
and deformations of the face region.

(@
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Fig. 1.9 lllustration of the difference in head and hand motion befmvspeaker and listener. The
black lines show the head and hand motion of the speaker #iuge in grey show the motion of
the listener. The two rows below shows key image frames flum3s interval where the person
on the right is speaking the entire time.

The example in Figure 1.9 shows that a speaker and an atdistener can have
very different behavior types if we simply observe the head laand motion sepa-
rately. Itis also interesting to observe that partial osia of one of the hands does
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not affect the discrimination between the roles of theserheeting participants. Of
course, the data is not always as clean and depends on hdwedvtbe participants
were. Note also that the motion vector magnitudes were stiomitiustrative pur-
poses only; in our experiments, we use the residual codirgt#, which we found
to produce better results since it tends to smooth out landdast variations in the
visual activity, and can also detect small motions from tpg if they are visible.

The features extraction method described in Section 1.8re for gross body
motion, and can include both head and hand motion where thdstere only spo-
radically visible in the close-up views (see bottom row ajue 1.2). Therefore,
we focus on extracting the desired features from the sidesv/(see image L and R
of the top row of Figure 1.2) where two people’s head and hanelsaptured.

We first need to find the boundary between the two persons mside view. The
method we employ was inspired by the work of Jaimes on stydyaaly postures of
office workers [33]. For each image frame, we construct aziootal profile of the
number of detected skin-color blocks in each column, as atmythe accumulated
profile at the bottom of the image in Figure 1.10. Supp8sey) is an indicator
function of skin color blocks for théx,y) block in the image frame. The horizon-
tal profile is simply$,(x) = 3 S(x,y). Since we expect the horizontal location of
each person’s head to result in a strong pe&, (), we use &-means clustering
algorithm (withK = 2) to find the locations of the two peaks. To ensure continuity
between image framek,-means is initialized with the locations of the peaks from
the previous image frame. The boundary is simply the misgvploétween the two
peaks. Once the left and right region of each camera-viewparated, we treated
the two portions of the image frame as two video streamsgegsgmiting the individ-
ual visual activity of each person in the same way as destiib8ection 1.5.1.

Next, we needed to find the boundary between the head and fareth per-
son. This time, for each person (i.e. the left half or righf bathe view, separated
by the estimated boundary), we constructed a vertical profithe number of de-
tected skin-color blocks in each row as shown in Figure JAB@in, since we expect
the vertical location of the head and hands to result in gtymeaks in the vertical
profile, we use &-means algorithm to find the two peaks. As befd¢eneans is
initialized with the locations of the peaks from the prexddomage frame, and the
boundary between the head and hands is just the mid-poin¢. that the vertical
profile is only considered below a certain height to remowgrispis detections of
skin color in the background.

Now, we can compute head and hands activity levels usingaime sapproach
as in Section 1.5.1, except that the area of interest is tiv@asd quadrant of the
side-view that contains the subject of interest, i.e. leftspn’s head, left person’s
hands, right person’s head and right person’s hands.

We evaluated the boundary estimation described above omer&ng session,
where bounding boxes of speakers’ heads had been annotéecrror rate of
finding the boundary between two persons was 0.4%, wherearigdefined as the
estimated boundary not cleanly separating the bounding$okthe two persons.
The error rate of finding the boundary between the head andshar®.5%, where
an error is defined as the estimated boundary not being bélewe¢ad bounding
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Fig. 1.10 Example of the horizontal and vertical profiles of the skiodis and the located bound-
aries between the two people and their respective head adégions. The accumulated horizon-
tal of the skin-color blocks is shown at the bottom of the egbmsnap-shot. The vertical profiles
of the skin-color blocks for each corresponding person ésvshto the left and right of the image
frame. The detected skin color regions are highlighted déhamed the estimated boundaries using
the horizontal and vertical profiles, are shown in green.

boxes of the respective person. We found that errors oatorostly when the hands
touched the face or moved above the shoulders or when a peraohed across
the table to their neighbor’s table area. From this 2-camsetaup, four different
personal activity features were generated; head activépd activity; the average
activity of the head and hand blobs; and the maximum of theageehead and
average hand motion after the features were normalized.

1.5.3 Estimating speakers using video only

From previous experiments, we have found that speech anistin activity of the
speaker are better correlated over long-term intervalsyBR We know that people
who move are not necessarily talking but we know that people talk will tend
to move. This is further illustrated by the distributionsHigure 1.11(a) where we
see accumulated histograms of the distribution of visuticas measured using
the residual coding bit-rate with the close-up cameras,nweople were seated
and speaking or silent. This shows that people who talk tenshdve more but
that people who are silent can sometimes move a lot too. Adiome in Section
1.5.1, when a person is detected as standing, their vistigitadevel is set to the
highest value for that person that has been observed sodta.dio that previously
[32] we found that using the motion vectors to associate@add video streams
led to worse performance. This is further illustrated inufg 1.11(b) where the
same distributions as (a) are shown but using the averagemmegctor magnitude
instead.

To estimate the speaker based on observing the meetingipanti with the most
motion, it is important to first normalize the visual actyieatures for each person.
The normalization allows us to compare the speaking andtdilehavior of each
participant in the meeting across all participants. For meetings, there are no
participants who remain inactive for the entire meetingefare, we apply the nor-
malization assuming that all participants will be relalyvengaged in the meeting
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Fig. 1.11 The accumulated visual activity histograms over our datadsring speaking (dashed
line) and silence (solid line) for all participants for bakie average residual coding bit-rate features
in (a) and also the average motion vector magnitude in (b).

activities. Since the method is on-line, the normalizatieeded to be adaptive and
so each new visual activity value was divided by the maximahe that was ob-
served until that point.

Once the values have been normalized, each person’s vistidtyastream is
considered to be comparable across individuals. Usingdsamption and also that
we know that speakers tend to move more than listeners,ybirsasions of each
person’s speaking activity was estimated. This was donedking the person who
had the highest visual activity over the previous time windloe estimated speaker,
as described in Algorithm 1. This makes the same assumpsidheaspeaker di-
arization system, that the speech is not overlapped, thougkality overlapping
regions of speech exist in our test data, and are usuallydtieds in which correct
estimates are more difficult to make. As discussed prewoitsiould have been
interesting to account for cases of overlapping speechrewiqus work has shown
that this would require a second pass over the data in ordieidtoegions where the
likelihood of a particular person speaking becomes mucletdtan during periods
of clean speech [8].

1.6 Associating Speaker Clusters with Video Channels

To begin with, let us consider how well speech and audio stsszan be associated
together if clean audio signals are used. We used speakaeségtions from the au-
dio signal taken from personal headset microphones as desaufpomated speaker
segmentation method. These were associated with the tiwakeed visual ac-

tivity features using the residual coding bit-rate or moti@ctor magnitudes. The
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foreach p in Participantsdo
| Votesp] =0;

end
foreacht in Windowdo

i = argmay (Visual Activityt, p]), Vp € Participants

Votegi] = Votedi] + 1;
end
j = argmax,(Votesp]), ¥p € Participants
BinaryVisualActivity[j]=1;

Algorithm 1: Estimating speakers using visual activity only.

headset segmentations were generated by extracting thkespenergy from each
headset and then thresholding this value to create a bifgarglavhere 1 represents
speaking and 0 is silence.

For each pair-wise combination of speaking and visual ggtchannels, their
corresponding normalized correlation was calculated W&a tnatched the channels
by using an ordered one-to-one mapping based on associa@ngest correlated
channels first. Figure 1.12 shows the algorithm in more Hetai
(a) Quantifying the distance between audio-visual streamghe pair-wise corre-
lation between each videw, and audio streana;, is calculated:-

SioV(t)-alt) .
ST ovt) s oa) o1

whereT is the total length of the meeting and in our experimeénisdexes the
feature value at each frame. For our experiments, the frateeused was 5 frames
per second.

(b) Selecting the closest audio-visual streamshe pair of audio and video streams
with the highest correlation are selected.

(c) Selection of the next closest audio-visual streamsthe next best correlated
pair of audio and video streams is selected.

(d) Full assignment of audio and video streamsstep (c) is repeated until all audio-
visual streams are associated.

Since the association is performed on a meeting basisntpsitant to evaluate
the performance similarly. Three evaluation criteria ased) to observe the diffi-
culty in associating more channels correctly in each mgetitard EvH), medium
(EvM), and soft EvS, criteria are used which assigns respectively a score of 1 f
each meeting only when all, at least two, or at least one op#ies of associated
audio and visual streams is correct for each meeting. Wairefirom evaluating on
a participant basis since the meeting-based ordered n@appitedure, by defini-
tion, discriminates pairs that are easier to distinguisha eneans of improving the
association from noisier channels which may have less valkkr activity.

The proportion of correctly associated meetings using bathal activity fea-
ture types are shown in Table 1.2 below. Correlating the $efagbgmentations and
Residue visual activity channels performed best. Also,aswlso encouraging to
see that even for the hard evaluation strategy, the perficeneemained high for
this case.

vy = (1.2)
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Associating Speaker Clusters and Visual Activity Streams

N Speaker
Clusters

E*»E E

(a; Correlate (t Select (c. Eliminate Select
and Select Next Final

Low Correlation High Correlation £} AV pairs to eliminate

S [0 Associated A/V streams

4 Visual
- Activity—»
Streams

Fig. 1.12 Greedy Algorithm for ordered and discriminative pairwissaciations between audio

and video streams. (i) All pairwise combinations of the awhd video streams are correlated. (ii)
The pair with the highest correlation is associated first #ueeh eliminated from the correlation

matrix.

EVS|EVM|EVH
Residug1.00 1.00 0.90
Vector {1.00 0.95 0.81]

Table 1.2 Proportion of correctly associated meetings using spesgimentations generated from
individual headset microphones that were then associaitbd/isual activity from the close-view
camerasEvH: Hard evaluation strategy where all audio-visual streamthé meeting must be
associated correctlfe vM Medium evaluation strategy where at least 2 of the audioalistreams

in the meeting must be associated corredilySSoft evaluation strategy where at least 1 of the
audio-visual streams in the meeting must be associatedatiyrr

For the on-line association method, the association malkedribed above was
modified so that after all streams were associated withingidisg window. Then,
only the person who spoke for the longest time was assigredabsociated video
stream for that window.

1.7 Audio-visual Clustering Results

Speaker localization experiments were run on the same ingegiita that was used
in the previous section. The outputs from the on-line spediegization were used
as a reference to determine which video stream containectleant speaker. As
described in Section 1.5 the visual activity of each indiibcould be represented
by a number of features. These are summarized in Table 1&&ldiion, a binary
feature can be derived from each of these using the methadtilbled in Section
1.5.3.

4 close-up camera Head Close-up
2 mid-view camerajHead+HandsleaiHandMax(Head,Handp

~

Table 1.3 Summary of video features that were used.

For the 4-camera and 2-camera case, the location of eaamswas known so
evaluation was straightforward. For the 2-camera casea# assumed that each
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half of the frame would be treated as a single stream, leadifgpossible video
candidates. An analysis window of 2s was used with a 40ms shif

1.7.1 Using Raw Visual Activity

As an initial extension to the method presented in the pressgubsection, we ap-
plied the on-line association algorithm to the real-valagdrage residual coding
bit-rate in the 5 video forms described in Table 1.3. The ltesare summarized
in Table 1.4 where evaluation was done using the same scasirigr the on-line
diarization. Rather than comparing the speaker refereritbetine speaker clusters,
which was done for the speaker diarization evaluation, wepgare the speaker ref-
erence with the estimated video stream labels. For clavéygefer to this measure as
the association error rate (AER) but the mechanics of thlEopeance measure are
the same as the DER. We see that the error is quite high insdbkdaut note that the
results are still better than random, where the error woaldibdser to 80% since the
associated video could be one of the 4 participants or notteeai. Comparing the
performance more carefully across the different input @aaednditions, we see that
there is again a slight improvement in performance when tixedrheadset signal
is used rather than the far-field microphone. Comparingsactioe different video
features that were tried, using the mean residual codingatstfor the estimated
hand regions from the 2-camera set-up for each person gavieett results, but
there was not a significant difference between the best anskvaverage results.

Input Input audio conditions

Video Methods F (21dB) ML (22dB) MH (31dB)
AER (%) (Min) JAER (%)(Min) [AER (%) (Min)
Head(Closeup) [68.39 (64.9298.42  (65.4598.04 (64.87

)
Max(Head,Hands|p8.05 _ (62.797.91 _ (62.0%8 (60.62)
Heads 68.1  (64.29p7.84 (63.7%7.98  (63.03)
Head+Hands _ [67.67 (61549758 (61.8/p7.54  (61.31)
Hands 67.92  (614157.65 (61.2%7.64  (61.13)

Table 1.4 Audio-visual speaker localization with the real-value@rage residual coding bit-rate
for each person, using the different video feature methbls signal-to-noise ratio for each audio
type is shown in brackets for each input audio source. Thdtseshow the average AER over all
the meetings for each experimental condition where thekbtad number shows the lowest AER
that was achieved.

1.7.2 Using estimates of speaking activity from video

We then conducted similar experiments with each video fealgpe replaced by
it's binarized version using the method described in Secti®.3. These binarized
video streams were then associated with the relevant atréians as described in
Section 1.6. The results are summarized in terms of AER dgaiable 1.5. Here

we see a significant increase in performance when theseizedarisual activity

values are used. This indicates that our hypothesis thgil@echo talk tend to

move more is quite successful at finding speakers from vidéo Overall, the best
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speaker and video association performance was observeattihwenotion from the
close-up cameras was used. This is not surprising sinceethe is represented at
a higher resolution and therefore lip motion is better cegutult is encouraging,
to see that even when using the 2-camera set-up, where thefsize heads was
about half of those in the close-view cameras, the perfocmas slightly worse
but still comparable. Of the 2-camera features, the onegusaad activity alone
gave the best average performance but the best performaneaey session used
the Max(Head,Hands) feature. This indicates that handanatn still be effective
for discriminating speakers from listeners and is completary to head motion.
The worse average AER of the Max(Head,Hands) case compaitbé Heads is
likely to be due to how much body motion was attributed to nmgeactivities such
as using a laptop, writing or manipulating the remote cdrgrototype they were
designing.

Input Input audio conditions

Video Methods F (21dB) ML (22dB) MH (31dB)
IAER (%) (Min) [AER (%)(Min) [AER (%) (Min)
Head(Close-up) (41.89 (20.191.91  (19.7131.55 (19.71
Max(Head,Handsp2.38 (22.2492.82  (22.3132.83 (22.34

— — — — —

Heads 423 (26.2092.75 (26424262 (264
Head+Hands |46 (33.3%46.83  (33.4136.24  (33.31
Hands 5383 (34.4%4.79 (34584.18  (34.6]

Table 1.5 Audio-visual speaker localization results using binatyneates of speaking status from

each person’s visual activity. The signal-to-noise ratiogach audio type is shown in brackets for
each input audio source. The results show the average AE&afdr experimental condition and

the accompanying bracketed number shows the minimum ABERMémachieved from one of the

12 sessions that were used.

Since the AER is not a widely used performance measure, iti-modal pro-
cessing tasks, we also provide the average precision| eexhF-measure when us-
ing the far-field microphone and binary estimates of spap&itivity in Table 1.6.
Here the boldened values show the best achieved perfornfianeesingle meet-
ing while the number on the left shows the average. Usingethesasures, similar
differences in performance are observed, although heirgg tise maximum of the
head and hand motion appears to give the best overall peafarefor the 2-camera
case. Again, the 4-camera case performs the best. It is r@tis@s$ting to observe
that the head-only and the Max(Head,Hands) features perganilarly while the
Head+Hands and hands-only features perform similarlyybealinpared to the rest.
This indicates that for both listeners and speakers, obvehead motion is more
discriminative in most situations. However, the succestheffeature which takes
the maximum of the head and hand motion indicates that thedredhand features
should be treated independently since they are complenyenta

From the results we have presented, it seems that usingriheylestimates of
speaking activity from video is effective. However, thefpemance is not as high
as estimating speakers from the audio alone. We can obserledations of failure
modes by looking more closely at an example meeting, whickh@wvn in Fig-
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Input Video Methods|  Prec. Recall F-meas.
Head(Close-up) 52.7472.9341.6462.5344.7266.1
Max(Heads,Hands) |50.6468.6241.5862.2643.59 63.1

Head 51.0166.4141.9558.1843.93 60.2
Head+Hands 39.6356.51(34.1754.2134.6849.44
Hands 37.1756.9131.3348.1231.6443.29

Table 1.6 Summary of the average precision, recall and F-measuréédadifferent video feature
types. Results for using the far-field microphone are shawththe binary estimates of speaking
status from visual activity. For each video feature, thénbgg performance is shown boldened.

ure 1.13. Here the binary segmentations of the estimateskepare shown using
the association method described in Section 1.6 (first rtwg;binary estimates
of speaking activity from video (second row); and the speakesters generated
from the on-line speaker diarization algorithm (third rowhe final row shows the
ground truth speaker segmentations. We can see that treegeeasions (e.g. be-
tween 150s-200s and 600s-700s) when the binary estimaspgaking activity fall
since the person who moves the most isn’t talking. This issngprising since there
is still a considerable overlap observed in the speaker igtehkr activity shown
in Figure 1.11 previously. Furthermore, we observed thextetfare occasions where
non-speakers were involved in other activities while someewas speaking (e.g.
working on a laptop). However, there are also observed cabkese speaker di-
arization fails and the speaker estimates from video wasesstul (between 350s-
450s). The failure in the speaker diarization could be cdusespeaker models
being confused due to either short utterances or becauspéadker models were
only generated from 60s of speech for each speaker in thertgaphase. This ex-
ample of complementary failure modes suggests that compthe audio and video
features at an earlier stage may also improve the speakaatdian performance.

1.8 Discussion

In this chapter, we have discussed off-line systems whichbm used for post-
processing of previously recorded data. However, audiaalimining of the data
could also happen in real-time. A system that can work oe-¢ind in real-time is
useful for remote meeting scenarios where subtle infoonabout an interaction
can be lost through transmission. These could relate termesion failure of one
or more modalities but could also be due to the inherent tislaydbetween send-
ing and receiving data. In terms of more complex immersi@bf@ms within the
remote meeting scenario, it is also difficult for remote jggraints to know when
to interrupt in a conversation or judge the mood or atmospléithe group they
are interacting with. For co-located meetings, live-reldog and summary may be
useful for a quick recap if someone missed what was said depgone call inter-
ruption) but doesn’t want to interrupt the conversation flaverder to catch up on
information they missed. Aside from this, live processitgpaaids post-meeting
browsing since a live capability could be used to enabletkigging of automati-
cally segmented events such as how an issue on the agendacgasd by other
meeting participants. Of course, some of the tags could b&tisuted by automated
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Fig. 1.13 Graphical comparison of different feature representatiand estimates. White areas

indicate either that someone is speaking. The first row shiogvsstimated associated video stream,
given the diarized speaker clusters in the third row; Thesécow shows the estimate of speaker
status from just the motion activity taken from the maximuithe head and hand motion; and the

final row shows the ground-truth speaker segmentations.

event identification methods but when certain technologresnot available, tag-
ging is an extremely useful way of labeling information. larficular, tagging has
been used extensively for mining image data with the emeryehsocial network-
ing sites where photos are organized amongst self-orgamgeaups. It has been
demonstrated that imagery data itself need not be used fangithe data if tags
are available [44].

Moving away from the on-line and real-time problems, thae @her ways in
which the performance of the speaker diarization and avidigal association task
can be improved. In particular, while the approach preskintéhis chapter demon-
strated a late fusion approach, given that we know that $paed body motion it
correlated, there is also motivation to make the task intpesker diarization and
localization task by fusing the modalities early on in thestéring process. This is
particularly interesting since clustering video data al@mo speakers tends to re-
quire apriori knowledge of the number or participants. Qfrse, techniques such as
face detection can be employed to identify the speakerizuttay not be practical
if the resolution of faces is in the video and non-frontakfatend to be difficult to
detect robustly. Research on fusing audio and visual feafior speaker diarization
or speaker localization as discussed in Section 1.1 hasshiwwnprovementin per-
formance over single-modality methods. However most wemtgyms experiments
on data where two talking heads are visible and remain velgtistationary with
fully frontal faces. Few consider more global body moveraé¢8t, 32, 10, 59, 60].
Vajaria et al. [59, 60] was one of the first to use gross bodyenmwnt for speaker
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diarization and localization but suffer from the need tostdu spatially separated
noisy visual features. Recently some preliminary succgssimg just a single cam-
era and microphone [23] to perform speaker diarization wlttee audio and visual
features are fused early on in the agglomerative clustgrningess. Results for the
speaker diarization task show improvement, despite thedswalution of each par-
ticipant in the captured video. In both cases, the cori@tatif speech and motion
from different body parts was not considered for the didigratask. Also, finding
a suitable way to evaluate the locations of speakers in theovin a similar way to
the diarization performance is yet to be found.

With the success of multi-modal speaker diarization meshids clear that the
trend is moving towards using multiple sensors and multiptelalities to solve
data-mining problems, certainly in the domain of meetinglgsis. The importance
of multi-modal data mining when capturing human behaviduither emphasized
since psychologically, both modalities are used diffdgamhen we communication
socially and communicate very different messages. It isstones these differences
and in particular unusual events which trigger memoriesubabout a particular
conversation. It could be said that these are the eventdwahéthe most difficult to
find again once they have been archived. This brings us tqiblecation of estimat-
ing dominance, which was demonstrated at the end of thistehdpshowed that
even with computationally efficient methods for clusterihg data where the esti-
mates of the raw outputs was degraded, the performance eéthantically higher
level dominance task was not necessarily affected. Thisesdds some interesting
questions about how the problem of the semantic gap shoudditheessed in data
mining. From a cognitive perspective, perhaps we would exjat the verbal con-
tent of each speaker would need to be analyzed. Howevenimgrgs have shown
that using speaking time alone, is quite robust, even if ttienates of the speaker
turns are not as accurate. Given these results, one migtitaskiestion of whether
other semantically high-level behavioral types or affilins can be characterized
using equally simple features such as the excitement lavelsneeting [65], roles
[68], or personality [52].

Ultimately, one could argue that to address the semantidrgagining meet-
ing data, we must start from the questions we ask ourselves wiing to search
through meeting data such as in terms of what happened, vérattthe conclusions
and how people interacted with each other. From a functipeapective, knowing
the meeting agenda and the final outcomes are useful but fisooial perspective
knowing about the subtle non-verbal behavior tells us mbriarelationships be-
tween colleagues or clients. For example, knowing how agmeusually behaves
can help us to detect unusual behavior, which could be itiditsof stress, if for
example the person has been delegated too much work. Treegkiarately useful
tools to ensure that teams in organizations work effegtiesld that staff are not
overworked or under-utilized. From an individual perspexstthere are those that
argue that success is well correlated with “emotional ligiehce” which is defined
as the ability to monitor both one’s own and the other’s fegdiand emotions in or-
der to guide one’s thinking and actions [51]. Automaticagtimating the feelings
and emotions of others are topics of interest currently f§5ln particular, recent
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work on distinguishing real from fake facial expressiongpafn has shown that
automated systems perform significantly better than hurbaereers [7]. Such re-
search shows the potential of using machines to help us siaaherhow we interact
and in particular how this could potentially be used to haffividuals in becoming
more aware of social interactions around them. Ultimatlgh knowledge should
lead to more efficient team-working where perhaps the edaikge mode in teams
occurs through a break-down in communication between mesnbe
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