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Abstract This chapter presents novel computationally efficient algorithms to extract
semantically meaningful acoustic and visual events related to each of the partici-
pants in a group discussion using the example of business meeting recordings. The
recording set-up involves relatively few audio-visual sensors, comprising a limited
number of cameras and microphones. We first demonstrate computationally efficient
algorithms that can identify who spoke and when, a problem inspeech process-
ing known as speaker diarization. We also extract visual activity features efficiently
from MPEG4 video by taking advantage of the processing that was already done
for video compression. Then, we present a method of associating the audio-visual
data together so that the content of each participant can be managed individually.
The methods presented in this article can be used as a principal component that
enables many higher-level semantic analysis tasks needed in search, retrieval, and
navigation.

With the decreasing cost of audio-visual sensors and the development of many
video-conferencing systems, a growing trend for creating instrumented meeting
rooms could be observed. As well as aiding teleconferencing, such meeting rooms
could be used to record all meetings as a tool for staff training and development or
to remind them of certain agenda items that were discussed. Given the number of
meetings that occur for a single person or even a work group, recording and stor-
ing meetings alone would not be useful unless they could be searched and browsed
easily later.

In this chapter, we discuss ways in which we can move towards the use of instru-
mented meeting rooms while also minimizing the amount of audio-visual sensors,
thus enabling fast set-up and portability; We show experiments to cluster the audio
and visual data of each person where only one microphone and two cameras are
used to record the group meetings. From this, we present computationally-efficient
algorithms for extracting low-level audio and video features. The chapter is divided
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into sections describing firstly the general challenges of the meeting room scenario
and what types of applications have been proposed. Then, we describe the related
work on audio-visual speaker segmentation and localization in Section 1.1. In Sec-
tion 1.2, we describe the overall approach that is presentedin this chapter. Then, we
describe the audio-visual sensor set-up that we used in evaluating our algorithms
in Section 1.3. Next, we describe how speakers and their turn-taking patterns are
extracted using an on-line speaker diarization algorithm (Section 1.4). Then, in Sec-
tion 1.5 we describe how visual activity from individuals can be extracted from
compressed-domain features and compare this to conventional pixel- domain pro-
cessing. In Section 1.6, we describe a method of associatingaudio-visual data and
present bench-marking results. We conclude in Section 1.8 and discuss the future
challenges.

1.1 Background
Clustering audio-visual meeting data can involve the grouping of events on different
levels. From the coarsest level, we may want to group them based on date, location
or which work-group participated. If we increase the granularity, we observe events
within a single meeting such as the types of activities that took place. Increasing
the granularity further, each activity consists of a conversation type (ranging from
monologue to discussion) where speech turn-taking events occurs. For each speech
event, there are also accompanying motion features such as anod of the head, that
might accompany a statement of agreement. We can go further in granularity by
observing each speech utterance such as separation into phonemes. The motion can
be organized based on the types of motion that occur such as whether it is an upward
or downward motion.

Like any data mining task, our ultimate obstacle in creatinga system that can
cater completely to our searching and browsing needs is the problem of theSeman-
tic Gap. The semantic gap is defined as the difference between the cognitive rep-
resentation of some data compared to what can be extracted interms of its digital
representation. In this chapter, we concentrate on discussing how audio-visual meet-
ing data can be clustered by who spoke when and where. The approach we present
here, consists of two tasks. The first clusters audio data based on how many speakers
there are and when they speak. Semantically, this is not so meaningful since we only
know that there are N speakers and when they spoke but we don’tknow who each
speaker was. The second task takes these speaker clusters and identifies where they
are in a set of video streams by associating the clustered audio with video features,
which can then be used to show the corresponding speakers at the relevant time.
This step already closes the semantic gap in terms of finding speakers and when
they spoke and provides audio and video footage of how a speaker delivered a line.

Historically, speaker diarization has been a useful tool for the speech processing
community since once the speakers have been identified, automatic speech recog-
nition (ASR) can be applied to the utterances and attributedto a particular person.
There are many who believe that closing the semantic gap has involved processing
speech in terms of its verbal content. From a linguistic viewpoint, this seems to be



1 Computationally Efficient Clustering of Audio-Visual Meeting Data 3

the natural choice if we wish to extract the verbal content ofwhat is being said so
that interactions can be analyzed semantically. However, while semantics are closely
related to verbal cues, meaning can also be extracted from non-verbal features. In
some cases, the non-verbal cues can be a better indicator of the sentiment of the de-
livery of a phrase. A common example would be the use of sarcasm where someone
may say “yes” when they actually mean “no”. Analyzing the verbal content alone
would provide us with the incorrect interpretation of the message but looking at the
non-verbal cues, we might see that the delivery contained audio features that are
more highly correlated with disagreement.

Practically speaking, systems that can automatically analyze audio-visual data
using ASR and computational linguistics face many challenges. In natural speech,
people do not always speak in perfect sentences and may correct themselves, change
topic, talk over each other or complete each other’s sentences. Typically ASR algo-
rithms are plagued with challenges such as variations in accent, overlapping speech,
and differences in delivery of the same word from the same person (which can de-
pend on the preceding and following words), errors from detected words which
are out of vocabulary, or inaccurate language models. The state-of-the art word er-
ror rate (WER) using distant microphones is around 25% usingclose-talk head-set
microphones and around 40% using a distant ( 0.5m) microphone source [29]. In
terms of computational linguistics, analyzing dialog acts(the aim of the utterance
e.g. agreement, disagreement, knowledge transfer), summarization, topic detection
or the sentiment of what was said based on the ASR output can introduce further
errors into the system chain. This is particularly problematic if the content of the
exchanges are to be used for the analysis of higher semantic concepts from the data.

Analyzing or identifying these higher semantic concepts goes beyond the tradi-
tional meeting browsing technologies that can be used to navigate between changes
in topic in a conversation or simple functions just as skipping through a video every
5 minutes. Being able to analyze a meeting by its social non-verbal content takes
the potential of meeting browsing technology to a more intuitive level for users.
Much of data mining and audio-visual clustering has been treated as a data-driven
problem but perhaps in the context of recorded meetings and in particular where
conversations are concerned, we must not overlook the stable nature of the non-
verbal behavior that is exhibited during these interactions. For example, it is known
that we move more than our mouths when we talk; we gesticulatefor emphasis or
to help us get our point across[43]. If our final goal is to browse meeting data in
terms of social memory triggers, can the patterns of non-verbal behavior seen in
social interactions be used to cluster the data too? That is,could aspects of non-
verbal behavior during conversations provide us a simple and practical solution to
this problem? Recent work on estimating behavioral constructs such as find who is
dominant [35], the personality of participants [52] or whatroles people have [20]
suggest that using automatically extracted non-verbal cues can be effective.

For meetings in a natural setting, we expect to see mostly unconstrained conver-
sations. Natural conversation in meetings involve many factors that are generally
unwanted in a clean test scenario. The first is overlaps or interruptions in speech.
Traditional data-sets [50] that are used to test audio-visual synchrony algorithms
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assume that only one person speaks at a time. In more complex cases, one per-
son mouths words not corresponding to the associated audio sequence in order to
confound simpler synchrony algorithms. Others contain subjects reciting digits si-
multaneously. However, in all cases, the speech is not natural and test data in such
conditions do not reflect the majority of circumstances in which people find them-
selves talking.

Other aspects of real conversations involves natural body movements. In natu-
ral conversations, people move to aid emphasis of what they are saying, provide
feedback for others and regulate their gaze patterns to encourage a smooth flow of
conversation between conversants [43, 30]. Promising workhas been presented to
take advantage of the correlation between more holistic body motion and speech
[59, 60, 32, 31]. Such methods have shown a relationship between global body
motion and speech over longer term sequences. The experiments presented in this
chapter, continues in this direction, exploring the extentto which we can use find-
ings in the psychology literature to address the audio-visual clustering problem in
meetings more directly for constructing a plausible practical approach to the prob-
lem of speaker localization. For the remainder of this section, we will discuss firstly
the general challenges faced with organizing meeting data.Then we will concen-
trate the discussion on related work on speaker diarizationand on audio-visual syn-
chrony, related to speech and finally some background on the findings in psychology
on audio-visual synchrony during conversations.

1.1.1 Challenges in Meeting Analysis
Organizing audio-visual meeting data involves using many different sorting criteria.
For now, let us concentrate on scenarios where all the conversants are co-located
so that interactions can occur face-to-face. Even under such circumstances where
acoustic and lighting conditions can be controlled, there are still considerable chal-
lenges that can be addressed in a multi-disciplinary domainfrom signal processing,
to computer vision, linguistics, and human-computer interaction.

Activities in meetings consist mainly of conversations or interactions between
the participants. Within meetings, people can communicatewith each other in dif-
ferent permutations and at different times. They can talk over each other, have sub-
conversations, be involved in multiple conversations at the same time, and can pro-
vide verbal as well as non-verbal signals to others. In some cases the verbal and
non-verbal delivery of a message can be contradictory.

As well as investigating group conversational dynamics in the work place from
a psychological perspective [6, 49, 17], work has been done in the domain of com-
putational modeling [40, 48, 2, 54]. Due to European projectinitiatives, the com-
putational modeling of meetings has been considered in terms of either visual or
audio-visual segmentation of the group activities as discussions, monologues, note-
taking, presentations or writing on a white board from the Multi-Modal Meeting
Manager Corpus (M4) (http://www.idiap.ch/mmm/corpora/m4-corpus/) [40, 2, 54]
where the meetings were scripted so each meeting activity and the times of exe-
cution were predetermined. The main problem with approaching meeting analysis
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from this perspective is that in reality, it is very difficultto objectively label mono-
logues, dialogues, discussions, or presentations. For example, if someone is giving
a presentation and someone else asks a question, which ultimately leads to a dis-
cussion, then is the current scenario a presentation or a discussion? The answer lies
in the interval over which the judgment is made or the temporal context which is
applied. Therefore, depending on whether the judgment is made on a fine-grained
time scale or a longer time scale, the judgment of the scenario can also be different.
Since the M4 corpus, new audio-visual meeting data (Augmented MultiParty In-
teraction (AMI) corpus http://www.idiap.ch/mmm/corpora/ami) has been recorded,
where the scripting part of the scenario was removed. In morenatural meeting sce-
narios, people do not cut from doing a presentation to a discussion or a monologue
necessarily so annotating these meetings in terms of meeting actions is not practical.

With this in mind, it is probably easier to extract semantically meaningful fea-
tures which are easier to evaluate. The problem with analyzing meeting actions is
that labeling is strongly dependent on the temporal context. Rather than examining
temporal intervals of time, we can also segment based on events such as a change
of speaker or when someone starts or stops speaking. Such instantaneous events are
much less ambiguous to label. This can be done by either speech/non-speech detec-
tion for cases where each person has their own microphone [66] or using speaker di-
arization if a single microphone cannot be directly associated with a single speaker.

If we are able to cluster the audio and video information of a speaker, we can
begin to analyze more complex behaviors such as who respondsto whom. Analy-
sis of turn-taking patterns in discussions can be quite powerful for indicating who
is dominant [35] or what roles people play in a meeting [20, 34]. With an audio-
visual clustering method we could automatically obtain both the audio and video
information for the project manager for a meeting, for example. Given that the dis-
cussion above has established that it is easier to analyze meetings in terms of these
turn-taking events, we provide a background review of speaker diarization. In ad-
dition, we provide a review of work on the audio-visual association of speakers so
that some semantic meaning can be associated with the speakers that are identified.
Finally, we provide some background information about how human body motions
are related to speech during conversations.

1.1.2 Background on Speaker Diarization
The goal of speaker diarization is to segment audio into speaker-homogeneous re-
gions with the ultimate goal of answering the question “who spoke when?” [55].
While for the related task of speaker recognition, models are trained for a specific set
of target speakers which are applied to an unknown test speaker for acceptance (the
target and test speaker match) or rejection (mismatch), in speaker diarization there
is no prior information about the identity or number of the speakers in the recording.
Conceptually, a speaker diarization system therefore performs three tasks: First, dis-
criminate between speech and non-speech regions (speech activity detection); sec-
ond, detect speaker changes to segment the audio data; third, group the segmented
regions together into speaker-homogeneous clusters.
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Some systems combine the two last steps into a single one, i.e. segmentation and
clustering is performed in one step. In the speech community, different speaker di-
arization approaches have been developed over the years. They can be organized
into either one-stage or two-stage algorithms, metric-based, and probabilistic sys-
tems, and either model-based or non-model-based systems.

Many state-of-the-art speaker diarization systems, use a one-stage approach, i.e.
the combination of agglomerative clustering with BayesianInformation Criterion
(BIC) [12] and Gaussian Mixture Models (GMMs) of frame-based cepstral fea-
tures (MFCCs) [55] (see Section 1.4). Recently, a new speaker clustering approach,
which applies the Ng-Jorden-Weiss (NJW) spectral clustering algorithm to speaker
diarization is reported [45].

In two-stage speaker diarization approaches, the first step(speaker segmenta-
tion) aims to detect speaker change points and is essentially a two-way classifi-
cation/decision problem, i.e., at each point, a decision onwhether it is a speaker
change point or not needs to be made. After the speaker changedetection, the speech
segments, each of which contains only one speaker, are then clustered using either
top-down or bottom-up clustering.

In model-based approaches, pre-trained speech and silencemodels are used for
segmentation. The decision about speaker change is made based on frame assign-
ment, i.e. the detected silence gaps are considered to be thespeaker change points.
Metric-based approaches are more often used for speaker segmentation. Usually, a
metric between probabilistic models of two contiguous speech segments, such as
GMMs, is defined and the decision is made via a simple thresholding procedure.

Over the years, research has concentrated on finding metricsfor speaker change
detection. Examples are the Bayesian Information Criterion (BIC) [12], cross BIC
(XBIC) [36][4], Generalised Likelihood Ratio (GLR) [18], Gish distance [26],
Kullback-Leibler distance (KL) [9], Divergence Shape Distance (DSD) [39]. A
more detailed overview can be found in [3]. Newer trends include the investigation
of new features for speaker diarization, such as [24], [61],and novel initialization
methods.

1.1.3 Background on Audio-Visual Synchrony
So far, the speaker diarization system provides some intervals of speech associated
with a single person but we do not have information about whatthey look like or
how the message was delivered non-verbally. This can be doneby associating the
audio streams with the correct video stream by identifying or exploiting the syn-
chrony between the two modalities. Alternatively, sound source localization from
video can be used to tackle a similar problem. Most computational modeling has
involved identifying one or two people in a single video camera only where short
term synchrony of lip motion and speech are the basis for audio-visual localization.
Audio-visual synchrony or sound source localization can beconsidered a task in
itself. However, both these tasks could be combined and recent work has started to
consider both speaker diarization and localization as a single audio-visual task.
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Common approaches to audio-visual speaker identification involve identifying
lip motion from frontal faces [46], [47], [13], [22], [21], [53], [57], [58]. There-
fore, the underlying assumption is that motion from a speaker comes predominantly
from the motion of the lower half of their face. This is further enforced by artificial
audio-visual data of short duration, where only one person speaks. In these scenar-
ios, natural conversation is not possible so problems with overlapping speech are
not considered. In addition, gestural or other non-verbal behaviors associated with
natural body motion during conversations are artificially suppressed [50].

Nock et al.[46] presents an empirical study to review definitions of audio-visual
synchrony and examine their empirical behavior. The results provide justifications
for the application of audio-visual synchrony techniques to the problem of active
speaker localization in the more natural scenario of broadcast video. Zhang et al.
[69] presented a multi-modal speaker localization method using a specialized satel-
lite microphone and omni-directional camera. Though the results seem comparable
to the state-of-the-art, the solution requires specialized hardware, which is not desir-
able in practice. Noulas et al. [47] integrated audio-visual features for on-line audio-
visual speaker diarization using a dynamic Bayesian network (DBN) but tests were
limited to two-person camera views. Tamura et. al. [58] demonstrate that the dif-
ferent shapes the mouth can take when speaking facilitates word recognition under
tightly constrained test conditions (e.g., frontal position of the subject with respect
to the camera while reading digits).

The approaches discussed above were often tested on very limited data sets
(which are not always publicly available) and were often recorded in highly con-
strained scenarios where individuals were unable to move ortalk naturally. In gen-
eral, the speakers face the camera frontally and do not talk over or interrupt each
other. In contrast to previous methods which combine audio and video sources in
the early stages of the speaker diarization process, we present a late fusion approach
where noisy video streams are associated with estimated speaker channels.

In terms of finding speakers in conversational settings where video data does not
capture high-resolution faces, Vajaria et al. [59, 60] werethe first to consider the
global body motion could be synchronous with speech. They presented a system
that combines audio and video on a feature-level using eigen-vector decomposition
of global body motion. Hung et al. [31] developed this notionfurther by considering
how simple motion features could be used to identify speakers in video streams for
group discussions. Finally Campbell and Suzuki [10] analyzed speech and upper
torso motion behavior in meetings to study participation levels but did not go further
into evaluating how well speech and motion could be correlated.

1.1.4 Human Body Motions in Conversations
In contrast to much previous work in this area, we have found that relying on lip mo-
tion to identify speakers is not always necessary and is not always possible [32, 31].
In the psychology literature, it has been shown on many occasions that speaker and
also listener movements are directly related to the role they play in a conversation
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[37, 43]. We will explore this in more detail here to show thatsuch non-verbal cues
play a huge role in understanding and inferring behavior types in conversations.

In social psychology, human body movements in conversations have been studied
from different perspectives. The first looks at the movements of speakers, the sec-
ond, at the movement of listeners, and the final considers thesynchrony between the
movements of speakers and listeners. The first two are important for understanding
what differentiates speakers from listeners in terms of kinesic behavior while the
third is used more to measure the degree of mutual engagementbetween conver-
sants. The latter is beyond the scope of this paper but more details can be found in a
critique of work on interactional synchrony by Gatewood andRosenwein [25].

The first aspect involving the movement of speakers suggeststhat speakers ac-
company their speech with gestures [43, 37]. Gestures accompanying speech them-
selves have been classified in many different ways. Adam Kendon defined gesture
as a

“range of visible bodily actions that are . . . generally regarded as part of a person’s willing
expression.” (p 49).

The reason for gesturing has been explained as a means of increasing precision
[43, 27], an evolutionary origin of language [38], or as an aid to speaking to fa-
cilitate lexical retrieval [42, 43]. Whatever the reason for moving when speaking,
psychologists are in agreement that we definitely move a number of body parts
when we speak. Moreover, it was noted by Gatewood and Rosenwein, that “normal
human beings exhibit remarkable integration of speech and body motion at the sub-
second time scale.” (p13, [25]). Such a phenomenon was labeled as ‘self synchrony’
by Condon and Ogston [15] who later elaborated that,

“As a normal person speaks, his body ‘dances’ in precise and ordered cadence with the
speech as it is articulated. The body moves in patterns of change which are directly propor-
tional to the articulated pattern of the speech stream....There are no sharp boundary points
but on-going, ordered variations of change in the body whichare isomorphic with the or-
dered variations of speech” (p153) [16].

Gestures that accompany speech can be divided into a number of different cat-
egories involving manipulation of facial features, head pose, the trunk (or upper
torso), arms, shoulders and hands. Hadar et al. found that short and rapid head
movements can accompany points of stress in a sentence as a person speaks [27]. In
addition, Hadar et al. also found that the frequency of largelinear movements of the
head was correlated with a person’s speaking time in a conversation [28]. In larger
groups, speakers can also move their head to address all the participants. Depend-
ing on the person’s status within the group, their level of conversant monitoring can
vary [19].

Hand motions have been shown to be very related to the contentof what is being
said; it has been suggested by Armstrong et al. that,

“Most gestures are one to a clause, but when there are successive features within a clause,
each corresponds to an idea unit in and of itself. . . Each gesture is created at the moment of
speaking and highlights what is relevant. . . ” (p 40-41) [5].
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McNeill called such gestures ‘spontaneous’ where “their meaning is determined
on-line with each performance.” (p 67) [43] and identified four types of relation-
ships between spontaneous gestures and speech; iconic, metaphoric, beat, and ab-
stract deictic. Iconic gestures represent objects and events in terms of resemblance;
metaphoric gestures represent an abstraction; beat features are rhythmic movements
of the hand such as for counting or indexing a list; and abstract deictics represent
locations of objects within a gesture space [43].

The listener in a conversation can, provide feedback to the speaker, indicate that
they wish to claim the floor, or indicate their interest in a conversation. It was found
by Hadar et al. [27] that listener’s head movements tended toinvolve more “linear
and expansive” movements when indicating that they wanted to speak, “symmet-
ric and cyclic” when providing simple feedback such as ‘yes’or ‘no’ responses,
and “linear but with shorter movements” during pauses in theother’s speech, which
could be attributed to ‘synchrony’ behavior between conversants. While speaker’s
movements tend to be more pronounced, the movements of listeners are less pro-
nounced but still observable. Harrigan found that body movements occurred more
frequently when a person was requesting a turn than during the middle of someone
else’s speaking turn [30], showing that listeners tend to move less. She also found
that hand gestures tended to precede a turn compared to feedback responses that
were observed from motion from the head such as nods, shakes and tilts, facial ex-
pressions and shoulder shrugs. In particular, gestures from the hands were related to
speech, serving to accent or emphasize what was being said.

1.2 Approach

Fig. 1.1 Figure showing our approach. The work consists of two stages: (a) solving the task of
‘who is speaking now?’ based on audio information only; (b) associating speakers with video
streams. Different types of video features (c-d) are used toenhance the practicality, and perfor-
mance of the system.

Figure 1.1 shows a flow diagram of the approach that we have taken for clustering
the audio-visual meeting data in terms of who spoke when and where they are. The
goal of the presented system is to identify speakers and their approximate locations
in multiple camera streams, in an on-line and real-time fashion. We perform exper-
iments with four-participant meetings for cases where there are either four cameras
(one for each person), or two cameras (two people are shown per camera). A sum-
mary of the approach is listed below.
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(a) On-line real-time speaker diarization: Speaker clusters are generated using the
audio data to represent each speaker and when they speak. From this unsupervised
data-driven method, a set of speaker clusters are generatedwhere it is assumed that
one speaker corresponds to one cluster.
(b) Audio-visual association of speakers streams and video: Using these speaker
clusters, audio-visual association with a set of video streams is performed so that
the video or approximate spatio-temporal location of a speaker can be found from
multiple cameras. We carried out experiments showing whether it is possible to as-
sociateall participants to their audio source correctly in a batch manner and how the
performance degrades as the length of the meeting is shortened. As the window size
gets smaller, the likelihood of more than 1 person speaking within the same time
interval is greatly reduced so we finally carried out experiments on selecting and
evaluating whetherjust the speakerwas associated with the correct video stream.
(c-d) Extraction of visual activity features : The video features themselves are
computed in the compressed domain to take advantage of processing that is already
required for the video compression process. Using these features, it is possible to do
some spatial video-processing in order to identify the locations of two participants
in video streams. We try using different sets of cameras to both represent and local-
ize speakers in the meeting. Finally, to improve localization performance, we tried
creating a binary representation of each person’s visual activity, which generated a
cleaner signal than the original raw features used.

1.3 The Augmented MultiParty Interaction (AMI) Corpus

Fig. 1.2 All available views in the data set.

One of the largest corpora of meeting room data has been recorded by the Aug-
mented MultiParty Interaction (AMI) corpus which was created out of a European
Union funded project [11]. This initiative generated a corpus that contains both 100
hours of audio-visual data and annotations from semantically low-level features,
such as who is speaking to, more semantically meaningful concepts, such as di-
alogue acts or who is looking at whom. In each meeting, four participants were
grouped together and were asked to design a remote control device over a series of
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sessions. Each person was assigned a role such as “Project Manager”, “Marketing
Expert”, or “Industrial Designer”. A microphone array and four cameras were set in
the center of the room. Side and rear cameras were also mounted to capture different
angles of the meeting room and its participants, as shown in Figure 1.2.

Each camera captures the visual activity of a single seated participant, who is
assigned a seat at the start of each meeting session. Participants are requested not to
change seats during the session. No other people enter or leave the meeting during
the session so there are always only 4 interacting participants. Each person also
wore a headset and a lapel microphone. A plan view of the meeting room is shown
in Figure 1.3.

Fig. 1.3 Plan of the experimental meeting room.

1.4 Audio Speaker Diarization

1.4.1 Traditional Offline Speaker Diarization
As previously explained in Section 1.1, the goal of speaker diarization is answer-
ing the question “who spoke when?”. The following section outlines the traditional
audio-only speaker diarization approach as shown in Figure1.4.
Feature Extraction Wiener filtering is first performed on the audio channel for
noise reduction. The HTK toolkit1 is used to convert the audio stream into 19-dim-
ensional Mel-Frequency Cepstral Coefficients (MFCCs) which are used as features
for diarization. A frame period of 10 ms with an analysis window of 30 ms is used
in the feature extraction.
Speech/Non-Speech DetectionThe speech/non-speech segmentation [64] proceeds
in three steps. At each step, feature vectors consisting of 12 MFCC components,
their deltas and delta-deltas (approximations of first and second order derivatives),
and zero-crossings are used.

In the first step, an initial segmentation is created by running the Viterbi algo-
rithm on a Hidden Markov Model (HMM) with Gaussian Mixture Model (GMM)
emissions that have been trained on Dutch broadcast news data to segment speech
and silence. In the second step, the non-speech regions are split into two clusters:

1 http://htk.eng.cam.ac.uk/
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regions with low energy and regions with high energy. A new and separate GMM is
then trained on each of the two new clusters and on the speech region. The number
of Gaussians used in the GMM is increased iteratively and re-segmentation is per-
formed in each iteration. The model that is trained on audio with high energy levels
is added to the non-speech model to capture non-speech-likesounds such as music,
slamming doors, paper rustling, etc. In the final step, the speech model is compared
to all other models using the Bayesian Information Criterion (BIC). If the BIC score
is positive, the models are added to the speech model.

Fig. 1.4 Block diagram illustrating the traditional speaker diarization approach: As described in
Section 1.4, an agglomerative clustering approach combines speaker segmentation and clustering
in one step.

Speaker Segmentation and ClusteringIn the segmentation and clustering stage of
speaker diarization, an initial segmentation is first generated by randomly partition-
ing the audio track intok segments of the same length.k is chosen to be much larger
than the assumed number of speakers in the audio track. For meetings data, we use
k = 16. The procedure for segmenting the audio data takes the following steps:

1. Train a set of GMMs for each initial cluster.
2. Re-segmentation: Run a Viterbi decoder using the currentset of GMMs to seg-

ment the audio track.
3. Re-training: Retrain the models using the current segmentation as input.
4. Select the closest pair of clusters and merge them. This isdone by going over all

possible pairs of clusters, and computing the difference between the sum of the
Bayesian Information Criterion (BIC) scores of each of the models and the BIC
score of a new GMM trained on the merged cluster pair. The clusters from the
pair with the largest positive difference are merged, the new GMM is used and
the algorithm repeats from the re-segmentation step.

5. If no pair with a positive difference is found, the algorithm stops, otherwise the
algorithm repeats from step 2.

A more detailed description can be found in [?].
The result of the algorithm consist of a segmentation of the audio track withn

clusters and an audio GMM for each cluster, wheren is assumed to be the number
of speakers.
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The computational load of such a system can be decomposed into three com-
ponents: (1) find the best merge pair and merge; (2) model re-training and re-
alignment; (3) other costs. After profiling the run-time distribution of an existing
speaker diarization system, we find that the BIC score calculation takes 62 % of the
total run-time.

Analyzing how the best merge hypothesis is found, the reasonfor the high cost
of the BIC score calculation can be identified. LetDa andDb represent the data
belonging to clustera and clusterb, which are modeled byθa andθb, respectively.
D represents the data after merginga andb, i.e.D = Da∪Db, which is parameterized
by θ . The Merge Score (MS) is calculated as Eq. (1.1) [1]:

MS(θa,θb) = logp(D|θ )− (logp(Da|θa)+ logp(Db|θb)) (1.1)

For each merge hypothesisa andb, a new GMM (θ ) needs to be trained. When the
system is configured to use more initial clusters, which is preferable for better initial
cluster purity, the computational load can become prohibitive.

The speaker diarization output consists of meta-data describing speech segments
in terms of starting time, ending time, and speaker cluster name. This output is
usually evaluated against manually annotated ground truthsegments. A dynamic
programming procedure is used to find the optimal one-to-onemapping between
the hypothesis and the ground truth segments so that the total overlap between the
reference speaker and the corresponding mapped hypothesized speaker cluster is
maximized. The difference is expressed as Diarization Error Rate (DER), which
is defined by NIST2. The DER can be decomposed into three components: misses
(speaker in reference, but not in hypothesis), false alarms(speaker in hypothesis,
but not in reference), and speaker errors (mapped referenceis not the same as hy-
pothesized speaker).

This Speaker Diarization System has competed in the NIST evaluations of the
past several years and established itself well among state-of-the-art systems3.

The current official score is 21.74% DER for the single-microphone case (RT07
evaluation set). This error is composed of 6.8 % speech/non-speech error and 14.9 %
speaker clustering error. The total speaker error includesall incorrectly classified
segments, including overlapped speech. NIST distinguishes between recordings
with multiple distant microphones (MDM) and recordings with one single distant
microphone (SDM). In the case of MDM, beam-forming is typically performed to
produce a single channel out of all available ones.

For our approach, the various experimental conditions thatwe used can be cat-
egorized into a single distant microphone case and a individual close-talk micro-
phone. For the first case, a single audio stream was created bymixing individual
close-talk microphone data, i.e. ‘Mixed Headset’ or ‘MixedLapel’ using a summa-
tion. For the latter condition, a single microphone was selected from a microphone
array from either the table or ceiling sources.

2 http://nist.gov/speech/tests/rt/rt2004/fall
3 NIST rules prohibit publication of results other than our own. Please refer to the NIST website
for further information: http://www.nist.gov/speech/tests/rt/rt2007
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1.4.2 Online Speaker Diarization
Our first goal is to segment live-recorded audio into speaker-homogeneous regions
to answer the question ‘who is speaking now?’. For the systemto work live and
on-line, the question must be answered on intervals of captured audio that are as
small as possible, and performed in at least real-time. The on-line speaker diariza-
tion system has been described in detail in [62] and has two steps: (i) training and
(ii ) recognition, which will be described in more detail in the subsequent sections.

Fig. 1.5 Summary of the on-line audio diarization algorithm.

Unsupervised Bootstrapping of Speaker ModelsTo bootstrap the creation of
models, we use the speaker diarization system proposed by Wooters et al. [64] which
was presented in Section 1.4.1 in the first meeting of each session. This also results
in an estimation of the number of speakers and their associated speaker models.
Once models have been created, they are added to the pool of speaker models and
can be reused for all subsequent meetings. The speaker diarization system used for
training is explained as follows.Speaker RecognitionIn recognition mode, the sys-
tem records and processes chunks of audio as follows. First,Cepstral Mean Subtrac-
tion (CMS) is implemented to reduce stationary channel effects [56]. While some
speaker-dependent information is lost, according to our experiments performed, the
major part of the discriminant information remains in the temporally varying signal.
In the classification step, the likelihood for each audio frame is computed against
each set of Gaussian Mixtures obtained in the training step.From our previous ex-
periments on larger meeting corpora, [62], we decided to usetwo-second chunks of
audio. This introduces a latency of about 2.2 seconds after the person has started
talking (recording 200 audio frames at 10 ms intervals plus aprocessing time of 0.1
× real time).

The decision on whether a segment belongs to a certain speaker or the non-speech
model is reached using majority vote on the likelihoods of anaudio frame belonging
to a GMM. If the audio segment is classified as speech, we compare the winning
speaker model against the second best model by computing thelikelihood ratio. We
use this as an indicator of the confidence level. In our experiments, we assume that
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there are speaker models for all possible speakers so we usedthe highest confidence
level to indicate the most likely speaker. For a more realistic case, it is possible
to apply a threshold to the confidence level to detect an unknown speaker but this
currently requires manual intervention.
A Note on Model Order SelectionOffline audio speaker diarization can lead to
more clusters than speakers since the method is data-drivenand therefore cluster
merging stops depending on whether the BIC score is improvedor worsened by
merging two candidate clusters. Due to the robustness of ouron-line speaker di-
arization algorithm, while more clusters than participants can be generated in the
offline training phase, in the on-line stage, noisy or extraneous clusters have much
lower likelihoods, so they are never selected as likely speaker models. We found in
our experiments that the number of recognized clusters and that of actual partici-
pants were always equal.

It is also important to note that the data that we use includesoverlapping speech.
These periods are automatically ignored when the speaker models are generated
to ensure they remain as clean as possible. Work has been carried out to address
overlapping speech in offline diarization systems but involve a second pass over
the diarized audio signal, which would not be feasible for anon-line and real-time
system [8].

1.4.3 Summary of the Diarization Performance
As described earlier, the output of a speaker diarization system consists of meta-
data describing speech segments in terms of start and end times, and speaker cluster
labels. NIST provides a measurement tool that uses a dynamicprogramming proce-
dure to find the optimal one-to-one mapping between the hypothesis and the ground
truth segments so that the total overlap between the reference speaker and the cor-
responding mapped hypothesized speaker cluster is maximized. The difference is
expressed as Diarization Error Rate, which is also defined byNIST4. The Diariza-
tion Error Rate (DER) can be decomposed into three components: misses (speaker
in reference, but not in hypothesis), false alarms (speakerin hypothesis, but not in
reference), and speaker errors (mapped reference is not thesame as hypothesized
speaker). It is expressed as a percentage relative to the total length of the meeting.

To characterize the algorithm under increasingly noisy input conditions, 3 dif-
ferent sources were used. Two signals were obtained by mixing the four individual
headset microphones (MH) or lapel microphones (ML) using a direct summation.
Also a real far-field case (F) where a single microphone from the array on the table
was used. Table 1.1 shows the results for the on-line audio diarization system where
the average, best and worse performances are shown for 12 meeting sessions that
were used. As expected, one can observe a decrease in performance as the SNR de-
creases. It was interesting to observe a high variation in performance where in one
case the error rate fell to 4.53% for the mixed headset condition. If we observe the
variation in performance more closely, as shown in Figure 1.6, we see that there is
one particular meeting session which has a consistently better performance than the

4 http://nist.gov/speech/tests/rt/rt2004/fall



16 Hayley Hung, Gerald Friedland, and Chuohao Yeo

Input Offline Results Online Results
Video Methods F (21dB) ML (22dB) MH (31dB) F (21dB) ML (22dB) MH (31dB)
Average DER(%) 33.16 36.35 36.16 18.26 26.18 28.57

Table 1.1 Diarization results in terms of the Diarization Error Rate (DER) using both offline and
on-line methods. Note that the offline results were computedusing meetings of 5-minute length
while the on-line results were bootstrapped using longer meetings but speaker models were pro-
duced from just 60s of speech from each person. Results are also presented using different micro-
phone sources where the associated signal to noise ratio foreach source is shown in brackets.

rest. This is because in this meeting, everyone stays seated(and therefore maintains
equidistance from the far-field microphone). In addition, the meeting is mostly a
discussion and there is little use of the other equipment in the room such as the slide
screen or white board. In contrast, meeting IS1006d is one ofthe worst perform-
ing meetings because people are often presenting at the whiteboard or slide screen.
It is also interesting to observe that while the relative performance when using the
far-field and headset microphones remain fairly consistent(the far-field case always
performs worse), the mixed lapel condition does not. This could be explained by
additional noise generated by shifting of the body or touching the microphone by
accident, particularly when participants were moving around the meeting room.

Fig. 1.6 Comparison of the on-line speaker diarization performanceacross different input condi-
tions and over the different meetings that were considered.

1.5 Extracting Computationally Efficient Video Features
With the increased need for recording and storing video data, many modern day
video cameras have hardware to encode the signal at the source. In order to capture
visual activity efficiently, we leverage the fact that meeting videos are already in
compressed form so that we can extract visual activity features at a much lower
computational cost.

These features are generated from compressed-domain information such as mo-
tion vectors and block discrete-cosine transform coefficients that are accessible with
almost zero cost from compressed video [63]. As compared to extracting similar
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higher resolution pixel-based features such as optical flow, compressed domain fea-
tures are much faster to extract, with a run-time reduction of 95% [67].

Video streams that have been compressed using MPEG4 encoding contains a
collection of group-of-picture (GOP) which is structured with an Intra-coded frame
or I-frame while the rest are predicted frames or P-frames. Figure 1.7 summarizes
the various compressed domain features which can be extracted cheaply from com-
pressed video as themotion vector magnitude(see Figure 1.7(b)) and theresidual
coding bitrate(see Figure 1.7(c)) to estimate visual activity level. Motion vectors,
illustrated in Figure 1.7(d), are generated from motion compensation during video
encoding; for each source block that is encoded in a predictive fashion, its motion
vectors indicate which predictor block from the reference frame (in this case the
previous frame for our compressed video data) is to be used. Typically, a predictor
block is highly correlated with the source block and hence similar to the block to
be encoded. Therefore, motion vectors are usually a good approximation of optical
flow, which in turn is a proxy for the underlying motion of objects in the video [14].

After motion compensation, the DCT-transform coefficientsof the residual signal
(the difference between the block to be encoded and its prediction from the reference
frame) are quantized and entropy coded. Theresidual coding bitrate, illustrated in
Figure 1.7(c), is the number of bits used to encode this transformed residual signal.
While the motion vector captures gross block translation, it fails to fully account for
non-rigid motion such as lips moving. On the other hand, the residual coding bitrate
is able to capture the level of such motion, since a temporal change that is not well-
modeled by the block translational model will result in a residual with higher energy,
and hence require more bits to entropy encode.

(a) (b) (c) (d)

Fig. 1.7 Compressed domain video feature extraction. (a) Original image, (b) Motion vectors, (c)
Residual coding bit-rate, (d) skin-colored regions.

1.5.1 Estimating personal activity levels in the compressed domain
Even when personal close-view cameras are used, the distance from the camera
causes scale and pose issues, as shown in some example shots in Figure 1.8. By
averaging activity measures over detected skin-color blocks, we hope to mitigate
some of these issues. Therefore we implement a block-level skin-color detector that
works mostly in the compressed domain which can detect head and hand regions as
illustrated in Figure 1.7. This is also useful for detectingwhen each meeting partici-
pant is in view. To do this, we use a GMM to model the distribution of chrominance
coefficients [41] in the YUV color-space. Specifically, we model the chrominance
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Fig. 1.8 Possible pose variations and ambiguities captured from thevideo streams.

coefficients,(U,V), as a mixture of Gaussians, where each Gaussian component
is assumed to have a diagonal covariance matrix. In the Intra-frames of the video,
we compute the likelihood of observed chrominance DCT DC coefficients accord-
ing to the GMM and threshold it to determine skin-color blocks. Skin blocks in the
Inter-frames are inferred by using motion vector information to propagate skin-color
blocks through the duration of the group-of-picture (GOP).

We threshold the number of skin-colored blocks in the close-up view to detect
when a participant is seated. If a participant is not detected in an image frame of
the close-up video stream, he is assumed to be presenting at the projection screen,
which is a reasonable assumption in the meeting data. Since they are assumed to be
presenting at the slide screen or whiteboard, they are more likely to be active and
also speaking. Therefore, a simple assumption was to set periods where the person
was detected as not seated, to the maximum value seen so far. While this is a simple
rule, it was found to be effective in previous experiments [31].

1.5.2 Finding personal head and hand activity levels
While previous work has concentrated on extracting personal visual activity from
gross head motion, here we go a step further by trying to understand how head and
hand motion might play a part in human discourse, at a holistic level. The impor-
tance of this can be highlighted in Figure 1.9 where we observe three seconds of a
meeting discussion. There are four participants in the discussion, in the configura-
tion shown in Figure 1.3. Here we see just two participants where the person on the
right is speaking. The top two rows of Figure 1.9 shows a breakdown of the gross
head and hand motion that is observed for the two observed meeting participants,
illustrated in the bottom row of the figure. To illustrate thechange in motion over
time more clearly, the average motion vector magnitudes over the head and hand
skin regions are shown (further details about how these are calculated will be pro-
vided in the remainder of this section). The visual head and hand activity for the
silent participant on the left is shown in grey while the speaker’s visual activity is
shown in black. The bottom two rows of the figure shows some keyimage frames
within the three second interval where the person on the right is speaking. She starts
off addressing those on the other side of the table and then directly addresses the
participant to the left half way through the observed interval. When he realizes that
he is being addressed directly, he moves his head to face her directly, but then low-
ers it again when attention is shifted away from him. In termsof hand motion, we
see that the speaker is the only person of the two that moves during this interval.
Note that in this paper, we describe head motion to be observed from skin-color
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regions, which captures visual activity inside the face as well as some translations
and deformations of the face region.

(a)

(b) (c)

(d) (e) (f)

Fig. 1.9 Illustration of the difference in head and hand motion between speaker and listener. The
black lines show the head and hand motion of the speaker whilethose in grey show the motion of
the listener. The two rows below shows key image frames from this 3s interval where the person
on the right is speaking the entire time.

The example in Figure 1.9 shows that a speaker and an attentive listener can have
very different behavior types if we simply observe the head and hand motion sepa-
rately. It is also interesting to observe that partial occlusion of one of the hands does
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not affect the discrimination between the roles of these twomeeting participants. Of
course, the data is not always as clean and depends on how involved the participants
were. Note also that the motion vector magnitudes were shownfor illustrative pur-
poses only; in our experiments, we use the residual coding bit-rate, which we found
to produce better results since it tends to smooth out large and fast variations in the
visual activity, and can also detect small motions from the lips if they are visible.

The features extraction method described in Section 1.5.1 were for gross body
motion, and can include both head and hand motion where the hands are only spo-
radically visible in the close-up views (see bottom row of Figure 1.2). Therefore,
we focus on extracting the desired features from the side views (see image L and R
of the top row of Figure 1.2) where two people’s head and handsare captured.

We first need to find the boundary between the two persons in each side view. The
method we employ was inspired by the work of Jaimes on studying body postures of
office workers [33]. For each image frame, we construct a horizontal profile of the
number of detected skin-color blocks in each column, as shown by the accumulated
profile at the bottom of the image in Figure 1.10. SupposeS(x,y) is an indicator
function of skin color blocks for the(x,y) block in the image frame. The horizon-
tal profile is simplySh(x) = ∑y S(x,y). Since we expect the horizontal location of
each person’s head to result in a strong peak inSh(x), we use aK-means clustering
algorithm (withK = 2) to find the locations of the two peaks. To ensure continuity
between image frames,K-means is initialized with the locations of the peaks from
the previous image frame. The boundary is simply the mid-point between the two
peaks. Once the left and right region of each camera-view is separated, we treated
the two portions of the image frame as two video streams, representing the individ-
ual visual activity of each person in the same way as described in Section 1.5.1.

Next, we needed to find the boundary between the head and handsfor each per-
son. This time, for each person (i.e. the left half or right half of the view, separated
by the estimated boundary), we constructed a vertical profile of the number of de-
tected skin-color blocks in each row as shown in Figure 1.10.Again, since we expect
the vertical location of the head and hands to result in strong peaks in the vertical
profile, we use aK-means algorithm to find the two peaks. As before,K-means is
initialized with the locations of the peaks from the previous image frame, and the
boundary between the head and hands is just the mid-point. Note that the vertical
profile is only considered below a certain height to remove spurious detections of
skin color in the background.

Now, we can compute head and hands activity levels using the same approach
as in Section 1.5.1, except that the area of interest is the estimated quadrant of the
side-view that contains the subject of interest, i.e. left person’s head, left person’s
hands, right person’s head and right person’s hands.

We evaluated the boundary estimation described above on onemeeting session,
where bounding boxes of speakers’ heads had been annotated.The error rate of
finding the boundary between two persons was 0.4%, where an error is defined as the
estimated boundary not cleanly separating the bounding boxes of the two persons.
The error rate of finding the boundary between the head and hands is 0.5%, where
an error is defined as the estimated boundary not being below the head bounding
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Fig. 1.10 Example of the horizontal and vertical profiles of the skin blocks and the located bound-
aries between the two people and their respective head and hand regions. The accumulated horizon-
tal of the skin-color blocks is shown at the bottom of the example snap-shot. The vertical profiles
of the skin-color blocks for each corresponding person is shown to the left and right of the image
frame. The detected skin color regions are highlighted in red and the estimated boundaries using
the horizontal and vertical profiles, are shown in green.

boxes of the respective person. We found that errors occurred mostly when the hands
touched the face or moved above the shoulders or when a personreached across
the table to their neighbor’s table area. From this 2-cameraset-up, four different
personal activity features were generated; head activity;hand activity; the average
activity of the head and hand blobs; and the maximum of the average head and
average hand motion after the features were normalized.

1.5.3 Estimating speakers using video only
From previous experiments, we have found that speech and thevisual activity of the
speaker are better correlated over long-term intervals [32, 31]. We know that people
who move are not necessarily talking but we know that people who talk will tend
to move. This is further illustrated by the distributions inFigure 1.11(a) where we
see accumulated histograms of the distribution of visual activity as measured using
the residual coding bit-rate with the close-up cameras, when people were seated
and speaking or silent. This shows that people who talk tend to move more but
that people who are silent can sometimes move a lot too. As mentioned in Section
1.5.1, when a person is detected as standing, their visual activity level is set to the
highest value for that person that has been observed so far. Note also that previously
[32] we found that using the motion vectors to associate audio and video streams
led to worse performance. This is further illustrated in Figure 1.11(b) where the
same distributions as (a) are shown but using the average motion vector magnitude
instead.

To estimate the speaker based on observing the meeting participant with the most
motion, it is important to first normalize the visual activity features for each person.
The normalization allows us to compare the speaking and silent behavior of each
participant in the meeting across all participants. For ourmeetings, there are no
participants who remain inactive for the entire meeting therefore, we apply the nor-
malization assuming that all participants will be relatively engaged in the meeting
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Fig. 1.11 The accumulated visual activity histograms over our data-set during speaking (dashed
line) and silence (solid line) for all participants for boththe average residual coding bit-rate features
in (a) and also the average motion vector magnitude in (b).

activities. Since the method is on-line, the normalizationneeded to be adaptive and
so each new visual activity value was divided by the maximum value that was ob-
served until that point.

Once the values have been normalized, each person’s visual activity stream is
considered to be comparable across individuals. Using thisassumption and also that
we know that speakers tend to move more than listeners, binary versions of each
person’s speaking activity was estimated. This was done by making the person who
had the highest visual activity over the previous time window the estimated speaker,
as described in Algorithm 1. This makes the same assumption as the speaker di-
arization system, that the speech is not overlapped, thoughin reality overlapping
regions of speech exist in our test data, and are usually the periods in which correct
estimates are more difficult to make. As discussed previously, it would have been
interesting to account for cases of overlapping speech but previous work has shown
that this would require a second pass over the data in order tofind regions where the
likelihood of a particular person speaking becomes much lower than during periods
of clean speech [8].

1.6 Associating Speaker Clusters with Video Channels
To begin with, let us consider how well speech and audio streams can be associated
together if clean audio signals are used. We used speaker segmentations from the au-
dio signal taken from personal headset microphones as a simple automated speaker
segmentation method. These were associated with the two real-valued visual ac-
tivity features using the residual coding bit-rate or motion vector magnitudes. The
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foreach p in Participantsdo

Votes[p] = 0;
end
foreach t in Windowdo

i = argmaxp(VisualActivity[t, p]), ∀p∈ Participants;
Votes[i] = Votes[i]+1;

end
j = argmaxp(Votes[p]), ∀p∈ Participants;
BinaryVisualActivity[j]=1;

Algorithm 1 : Estimating speakers using visual activity only.

headset segmentations were generated by extracting the speaker energy from each
headset and then thresholding this value to create a binary signal where 1 represents
speaking and 0 is silence.

For each pair-wise combination of speaking and visual activity channels, their
corresponding normalized correlation was calculated. We then matched the channels
by using an ordered one-to-one mapping based on associatingthe best correlated
channels first. Figure 1.12 shows the algorithm in more detail.
(a) Quantifying the distance between audio-visual streams: the pair-wise corre-
lation between each video,vi , and audio stream,a j , is calculated:-

ρvi ,a j =
∑T

t=0v(t) ·a(t)

∑T
t=0 v(t)∑T

t=0a(t)
, ∀{i, j} (1.2)

whereT is the total length of the meeting and in our experimentst indexes the
feature value at each frame. For our experiments, the frame rate used was 5 frames
per second.
(b) Selecting the closest audio-visual streams: the pair of audio and video streams
with the highest correlation are selected.
(c) Selection of the next closest audio-visual streams: the next best correlated
pair of audio and video streams is selected.
(d) Full assignment of audio and video streams: step (c) is repeated until all audio-
visual streams are associated.

Since the association is performed on a meeting basis, it is important to evaluate
the performance similarly. Three evaluation criteria are used, to observe the diffi-
culty in associating more channels correctly in each meeting. Hard (EvH), medium
(EvM), and soft (EvS), criteria are used which assigns respectively a score of 1 for
each meeting only when all, at least two, or at least one of thepairs of associated
audio and visual streams is correct for each meeting. We refrain from evaluating on
a participant basis since the meeting-based ordered mapping procedure, by defini-
tion, discriminates pairs that are easier to distinguish, as a means of improving the
association from noisier channels which may have less observable activity.

The proportion of correctly associated meetings using bothvisual activity fea-
ture types are shown in Table 1.2 below. Correlating the headset segmentations and
Residue visual activity channels performed best. Also, it was also encouraging to
see that even for the hard evaluation strategy, the performance remained high for
this case.
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Fig. 1.12 Greedy Algorithm for ordered and discriminative pairwise associations between audio
and video streams. (i) All pairwise combinations of the audio and video streams are correlated. (ii)
The pair with the highest correlation is associated first andthen eliminated from the correlation
matrix.

EvS EvM EvH
Residue1.00 1.00 0.90
Vector 1.00 0.95 0.81

Table 1.2 Proportion of correctly associated meetings using speech segmentations generated from
individual headset microphones that were then associated with visual activity from the close-view
cameras.EvH: Hard evaluation strategy where all audio-visual streams in the meeting must be
associated correctly;EvM Medium evaluation strategy where at least 2 of the audio-visual streams
in the meeting must be associated correctly;EvSSoft evaluation strategy where at least 1 of the
audio-visual streams in the meeting must be associated correctly.

For the on-line association method, the association methoddescribed above was
modified so that after all streams were associated within a 2ssliding window. Then,
only the person who spoke for the longest time was assigned their associated video
stream for that window.

1.7 Audio-visual Clustering Results
Speaker localization experiments were run on the same meeting data that was used
in the previous section. The outputs from the on-line speaker diarization were used
as a reference to determine which video stream contained therelevant speaker. As
described in Section 1.5 the visual activity of each individual could be represented
by a number of features. These are summarized in Table 1.3. Inaddition, a binary
feature can be derived from each of these using the method described in Section
1.5.3.

4 close-up cameras Head Close-up
2 mid-view camerasHead+HandsHeadHandsMax(Head,Hands)

Table 1.3 Summary of video features that were used.

For the 4-camera and 2-camera case, the location of each stream was known so
evaluation was straightforward. For the 2-camera case, it was assumed that each
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half of the frame would be treated as a single stream, leadingto 4 possible video
candidates. An analysis window of 2s was used with a 40ms shift.

1.7.1 Using Raw Visual Activity
As an initial extension to the method presented in the previous subsection, we ap-
plied the on-line association algorithm to the real-valuedaverage residual coding
bit-rate in the 5 video forms described in Table 1.3. The results are summarized
in Table 1.4 where evaluation was done using the same scoringas for the on-line
diarization. Rather than comparing the speaker reference with the speaker clusters,
which was done for the speaker diarization evaluation, we compare the speaker ref-
erence with the estimated video stream labels. For clarity,we refer to this measure as
the association error rate (AER) but the mechanics of the performance measure are
the same as the DER. We see that the error is quite high in all cases but note that the
results are still better than random, where the error would be closer to 80% since the
associated video could be one of the 4 participants or none ofthem. Comparing the
performance more carefully across the different input audio conditions, we see that
there is again a slight improvement in performance when the mixed headset signal
is used rather than the far-field microphone. Comparing across the different video
features that were tried, using the mean residual coding bit-rate for the estimated
hand regions from the 2-camera set-up for each person gave the best results, but
there was not a significant difference between the best and worse average results.

Input Input audio conditions
Video Methods F (21dB) ML (22dB) MH (31dB)

AER (%) (Min) AER (%)(Min) AER (%) (Min)
Head(Closeup) 68.39 (64.92)68.42 (65.45)68.04 (64.82)
Max(Head,Hands)68.05 (62.75)67.91 (62.09)68 (60.62)
Heads 68.1 (64.25)67.84 (63.79)67.98 (63.03)
Head+Hands 67.67 (61.54)67.58 (61.87)67.54 (61.31)
Hands 67.92 (61.41)67.65 (61.29)67.64 (61.13)

Table 1.4 Audio-visual speaker localization with the real-valued average residual coding bit-rate
for each person, using the different video feature methods.The signal-to-noise ratio for each audio
type is shown in brackets for each input audio source. The results show the average AER over all
the meetings for each experimental condition where the bracketed number shows the lowest AER
that was achieved.

1.7.2 Using estimates of speaking activity from video
We then conducted similar experiments with each video feature type replaced by
it’s binarized version using the method described in Section 1.5.3. These binarized
video streams were then associated with the relevant audio stream as described in
Section 1.6. The results are summarized in terms of AER againin Table 1.5. Here
we see a significant increase in performance when these binarized visual activity
values are used. This indicates that our hypothesis that people who talk tend to
move more is quite successful at finding speakers from video only. Overall, the best
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speaker and video association performance was observed when the motion from the
close-up cameras was used. This is not surprising since the head is represented at
a higher resolution and therefore lip motion is better captured. It is encouraging,
to see that even when using the 2-camera set-up, where the size of the heads was
about half of those in the close-view cameras, the performance is slightly worse
but still comparable. Of the 2-camera features, the one using head activity alone
gave the best average performance but the best performance for any session used
the Max(Head,Hands) feature. This indicates that hand motion can still be effective
for discriminating speakers from listeners and is complementary to head motion.
The worse average AER of the Max(Head,Hands) case compared to the Heads is
likely to be due to how much body motion was attributed to meeting activities such
as using a laptop, writing or manipulating the remote control prototype they were
designing.

Input Input audio conditions
Video Methods F (21dB) ML (22dB) MH (31dB)

AER (%) (Min) AER (%)(Min) AER (%) (Min)
Head(Close-up) 41.89 (20.19)41.91 (19.71)41.55 (19.71)
Max(Head,Hands)42.38 (22.24)42.82 (22.37)42.83 (22.39)
Heads 42.3 (26.27)42.75 (26.42)42.62 (26.4)
Head+Hands 46 (33.3)46.83 (33.41)46.24 (33.31)
Hands 53.83 (34.48)54.79 (34.55)54.18 (34.67)

Table 1.5 Audio-visual speaker localization results using binary estimates of speaking status from
each person’s visual activity. The signal-to-noise ratio for each audio type is shown in brackets for
each input audio source. The results show the average AER foreach experimental condition and
the accompanying bracketed number shows the minimum AER that was achieved from one of the
12 sessions that were used.

Since the AER is not a widely used performance measure, in multi-modal pro-
cessing tasks, we also provide the average precision, recall and F-measure when us-
ing the far-field microphone and binary estimates of speaking activity in Table 1.6.
Here the boldened values show the best achieved performancefor a single meet-
ing while the number on the left shows the average. Using these measures, similar
differences in performance are observed, although here, using the maximum of the
head and hand motion appears to give the best overall performance for the 2-camera
case. Again, the 4-camera case performs the best. It is also interesting to observe
that the head-only and the Max(Head,Hands) features perform similarly while the
Head+Hands and hands-only features perform similarly badly compared to the rest.
This indicates that for both listeners and speakers, observing head motion is more
discriminative in most situations. However, the success ofthe feature which takes
the maximum of the head and hand motion indicates that the head and hand features
should be treated independently since they are complementary.

From the results we have presented, it seems that using the binary estimates of
speaking activity from video is effective. However, the performance is not as high
as estimating speakers from the audio alone. We can observe the locations of failure
modes by looking more closely at an example meeting, which isshown in Fig-
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Input Video Methods Prec. Recall F-meas.
Head(Close-up) 52.7472.9341.6462.5344.7266.18
Max(Heads,Hands) 50.6468.6241.5862.2643.59 63.1
Head 51.0166.4141.9558.1843.93 60.2
Head+Hands 39.6356.5134.1754.2134.6849.44
Hands 37.1756.9131.3348.1231.6443.28

Table 1.6 Summary of the average precision, recall and F-measure for the different video feature
types. Results for using the far-field microphone are shown and the binary estimates of speaking
status from visual activity. For each video feature, the highest performance is shown boldened.

ure 1.13. Here the binary segmentations of the estimated speaker are shown using
the association method described in Section 1.6 (first row);the binary estimates
of speaking activity from video (second row); and the speaker clusters generated
from the on-line speaker diarization algorithm (third row). The final row shows the
ground truth speaker segmentations. We can see that there are occasions (e.g. be-
tween 150s-200s and 600s-700s) when the binary estimates ofspeaking activity fail
since the person who moves the most isn’t talking. This is notsurprising since there
is still a considerable overlap observed in the speaker and listener activity shown
in Figure 1.11 previously. Furthermore, we observed that there are occasions where
non-speakers were involved in other activities while someone was speaking (e.g.
working on a laptop). However, there are also observed caseswhere speaker di-
arization fails and the speaker estimates from video was successful (between 350s-
450s). The failure in the speaker diarization could be caused by speaker models
being confused due to either short utterances or because thespeaker models were
only generated from 60s of speech for each speaker in the training phase. This ex-
ample of complementary failure modes suggests that combining the audio and video
features at an earlier stage may also improve the speaker diarization performance.

1.8 Discussion
In this chapter, we have discussed off-line systems which can be used for post-
processing of previously recorded data. However, audio-visual mining of the data
could also happen in real-time. A system that can work on-line and in real-time is
useful for remote meeting scenarios where subtle information about an interaction
can be lost through transmission. These could relate to transmission failure of one
or more modalities but could also be due to the inherent time delay between send-
ing and receiving data. In terms of more complex immersion problems within the
remote meeting scenario, it is also difficult for remote participants to know when
to interrupt in a conversation or judge the mood or atmosphere of the group they
are interacting with. For co-located meetings, live-recording and summary may be
useful for a quick recap if someone missed what was said (e.g.a phone call inter-
ruption) but doesn’t want to interrupt the conversation flowin order to catch up on
information they missed. Aside from this, live processing also aids post-meeting
browsing since a live capability could be used to enable livetagging of automati-
cally segmented events such as how an issue on the agenda was received by other
meeting participants. Of course, some of the tags could be substituted by automated
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Fig. 1.13 Graphical comparison of different feature representations and estimates. White areas
indicate either that someone is speaking. The first row showsthe estimated associated video stream,
given the diarized speaker clusters in the third row; The second row shows the estimate of speaker
status from just the motion activity taken from the maximum of the head and hand motion; and the
final row shows the ground-truth speaker segmentations.

event identification methods but when certain technologiesare not available, tag-
ging is an extremely useful way of labeling information. In particular, tagging has
been used extensively for mining image data with the emergence of social network-
ing sites where photos are organized amongst self-organized groups. It has been
demonstrated that imagery data itself need not be used for mining the data if tags
are available [44].

Moving away from the on-line and real-time problems, there are other ways in
which the performance of the speaker diarization and audio-visual association task
can be improved. In particular, while the approach presented in this chapter demon-
strated a late fusion approach, given that we know that speech and body motion it
correlated, there is also motivation to make the task into a speaker diarization and
localization task by fusing the modalities early on in the clustering process. This is
particularly interesting since clustering video data alone into speakers tends to re-
quire apriori knowledge of the number or participants. Of course, techniques such as
face detection can be employed to identify the speakers but this may not be practical
if the resolution of faces is in the video and non-frontal faces tend to be difficult to
detect robustly. Research on fusing audio and visual features for speaker diarization
or speaker localization as discussed in Section 1.1 has shown an improvement in per-
formance over single-modality methods. However most work performs experiments
on data where two talking heads are visible and remain relatively stationary with
fully frontal faces. Few consider more global body movements [31, 32, 10, 59, 60].
Vajaria et al. [59, 60] was one of the first to use gross body movement for speaker
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diarization and localization but suffer from the need to cluster spatially separated
noisy visual features. Recently some preliminary success by using just a single cam-
era and microphone [23] to perform speaker diarization where the audio and visual
features are fused early on in the agglomerative clusteringprocess. Results for the
speaker diarization task show improvement, despite the lowresolution of each par-
ticipant in the captured video. In both cases, the correlation of speech and motion
from different body parts was not considered for the diarization task. Also, finding
a suitable way to evaluate the locations of speakers in the video in a similar way to
the diarization performance is yet to be found.

With the success of multi-modal speaker diarization methods, it is clear that the
trend is moving towards using multiple sensors and multiplemodalities to solve
data-mining problems, certainly in the domain of meeting analysis. The importance
of multi-modal data mining when capturing human behavior isfurther emphasized
since psychologically, both modalities are used differently when we communication
socially and communicate very different messages. It is sometimes these differences
and in particular unusual events which trigger memories forus about a particular
conversation. It could be said that these are the events which are the most difficult to
find again once they have been archived. This brings us to the application of estimat-
ing dominance, which was demonstrated at the end of this chapter. It showed that
even with computationally efficient methods for clusteringthe data where the esti-
mates of the raw outputs was degraded, the performance of thesemantically higher
level dominance task was not necessarily affected. This addresses some interesting
questions about how the problem of the semantic gap should beaddressed in data
mining. From a cognitive perspective, perhaps we would expect that the verbal con-
tent of each speaker would need to be analyzed. However, experiments have shown
that using speaking time alone, is quite robust, even if the estimates of the speaker
turns are not as accurate. Given these results, one might askthe question of whether
other semantically high-level behavioral types or affiliations can be characterized
using equally simple features such as the excitement levelsin a meeting [65], roles
[68], or personality [52].

Ultimately, one could argue that to address the semantic gapin mining meet-
ing data, we must start from the questions we ask ourselves when trying to search
through meeting data such as in terms of what happened, what were the conclusions
and how people interacted with each other. From a functionalperspective, knowing
the meeting agenda and the final outcomes are useful but from asocial perspective
knowing about the subtle non-verbal behavior tells us more about relationships be-
tween colleagues or clients. For example, knowing how a person usually behaves
can help us to detect unusual behavior, which could be indications of stress, if for
example the person has been delegated too much work. These are ultimately useful
tools to ensure that teams in organizations work effectively and that staff are not
overworked or under-utilized. From an individual perspective, there are those that
argue that success is well correlated with “emotional intelligence” which is defined
as the ability to monitor both one’s own and the other’s feelings and emotions in or-
der to guide one’s thinking and actions [51]. Automaticallyestimating the feelings
and emotions of others are topics of interest currently [65,7]. In particular, recent
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work on distinguishing real from fake facial expressions ofpain has shown that
automated systems perform significantly better than human observers [7]. Such re-
search shows the potential of using machines to help us understand how we interact
and in particular how this could potentially be used to help individuals in becoming
more aware of social interactions around them. Ultimately,such knowledge should
lead to more efficient team-working where perhaps the easiest failure mode in teams
occurs through a break-down in communication between members.
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