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Abstract

We address the problem of both estimating the dominant
person in a meeting from a single audio source and iden-
tifying them visually in a multi-camera setting. We use a
speaker diarization algorithm to perform speaker segmen-
tation and clustering, representing when they spoke. Using
a greedy ordered audio-visual association algorithm, we in-
vestigate using the speaker clusters to find the correspond-
ing person in one of the video channels. The difficulty of
the problem is that firstly the speaker diarization output is
noisy (e.g. for participants who speak little) and often pro-
duces an unequal number of clusters to true participants.
Secondly, personal visual activity from natural upper torso
motion, which can include highly deformable pose changes
and perspective distortion, is computed through computa-
tionally efficient coarse features. Our results using almost
2 hours of audio-visual data from 4-participant meetings
show a strong correlation between the estimated speaker
diarization and visual activity features, enabling the iden-
tification of the most dominant person as a pair of audio-
visual channels.

1. Introduction
In meetings, groups of people gather to discuss and/or

complete a task. Through this conversational process, it
is natural for members to try to establish hierarchy in the
group, even if the members are unacquainted [15]. One way
that this can be observed is through dominant behaviour.
Dominance has been studied in social psychology for sev-
eral decades and has been described by Dunbar and Bur-
goon, as “...necessarily manifest. It refers to context and
relationship-dependent interactional patterns in which one
actor’s assertion of control is met by acquiescence from

another” [4] (p. 208) . It is often used synonymously
with influence and power but social psychologists differen-
tiate them by describing power as the “...capacity to pro-
duce intended effects, and in particular, the ability to in-
fluence the behavior of another person” [4] (p. 208). Im-
portantly, in terms of inferring dominance through observ-
able non-verbal cues, Schmid Mast [11] found, through a
meta-analysis of several decades of literature, that domi-
nance could be inferred through speaking time.

To our knowledge, Basu et al. [1] were the first to con-
sider how influence could be automatically estimated. They
modelled group interactions with the Influence Model (IM)
with Markov chains where the transitions were affected by
the influence that one participant could exert on another.
Zhang et al. [18] expanded the idea further by suggest-
ing the team-player influence model (TPIM), a two-layer
dynamic Bayesian network which could model the influ-
ence of individuals on a group and vice versa. Rienks et
al. [14] compared the TPIM with another method of es-
timating dominance using support vector machines . Ot-
suka et al. [13] also addressed influence by using an es-
timate of the visual focus of attention of each participant.
We showed that simple speaking activity features automat-
ically extracted from audio out-perform visual activity fea-
tures extracted from video [7, 10]. In addition, as a single
feature, the total speaking time of each participant is the
best indicator of dominance. However there is still a need
to automatically identify the most dominant person visually.

There has been much research in the area of audio-visual
speaker association [9, 8, 16, 17] in which the scenario un-
der investigation is that of spatio-temporally identifying one
of two possible speakers in each video. Some of this work
[9, 8, 16] has used very simple audio-visual data lasting be-
tween 2-20s where it is assumed that only one speaker ut-



ters a phrase. In some cases, the task is made more compli-
cated by making one of the two people mouth the part of the
phrase while the other utters them [16]. The limits of these
works [9, 8, 16] are that they rely on video with near-frontal
faces, the speakers do not move naturally, and the match-
ing of audio and video signals are performed on very short
time segments. In addition, there is only one speaker during
each of the test sequences. Vajaria et al. [17] used more
complex data from 4 five-minute long video clips, where
they assumed that visual motion from a speaker could come
from their gestures as well as facial motion. Here, the data
used was more challenging since the speakers did not face
the cameras frontally and background noise, such as a ring-
ing mobile phone, was also possible. However, the speak-
ers were required to minimise speaking over each other so
maintaining a natural exchange was difficult.

Here we use a much larger audio-visual data set of al-
most 2 hours with more challenging, complex, and noisy
data. The AMI corpus [2] consists of audio-visual data
captured from 4 participants in a natural meeting scenario.
There are props such as a table, white board and slide screen
in the meeting room (see Figure 1), which encourages nat-
ural discussions and thus more difficult scenarios. During
these natural meetings, speakers could interrupt, talk over
each other, and move spontaneously.

We present firstly our experiments on estimating the
dominant person from a single distant microphone. Then,
we describe two sets of experiments to estimate the audio-
visual speaker association. First, personal audio sourcesand
manually annotated ground truth speaker segmentations are
correlated with visual activity features from personal close-
view cameras. Then, we use a single audio source and in-
vestigate how varying the experimental conditions and di-
arization strategies could affect the output of the audio sig-
nal for audio-visual speaker association compared to esti-
mating the dominant person in the meetings. Previously, we
found that the dominance estimation was not particularly
sensitive to the error rate of the diarization output [6] or a
low signal to noise ratio (SNR) from the input source. We
examine the extent to which this insensitivity is observed
when mapping the speech features to unlabelled video chan-
nels and how this affects the dominance estimation task.

The rest of this paper is organised as follows: Section
2 describes the data and dominance annotation procedure;
Section 3 describes the different strategies we used for make
the speaker diarization algorithm more efficient; Section 4
describes how we extract computationally efficient visual
activity features from compressed video taken from individ-
ual close-view cameras; Section 5 provides the results from
estimating the dominant person with the diarization; Sec-
tion 6 describes our audio-visual association method; Sec-
tion 7 provides the results from associating clusters with
visual activity features; We conclude in Section 8.

2. Meeting Data and Dominance Annotations
We used the publicly available AMI meeting corpus [2]

which was captured in room as shown in Figure 1. A micro-
phone array and four individual close-view cameras were
set on the table and each person wore an omni-directional
headset and lapel microphone. Non-scripted meeting data
was produced where four members of a team were asked
to design a remote control device over a series of sessions.
This encouraged natural interactions between participants.

Figure 1. Plan view of the meeting room set up.

59 5-minute non-overlapping meeting segments from 11
sessions were used for human annotations of dominance.
21 annotators were divided into groups of 3 such that
each group always annotated the same segments. For each
watched segment, annotators were asked to rank the partici-
pants according to their level of perceived dominance, from
1 (most) to 4 (least). Annotators were not given a prior
definition of dominance. More details about the annotation
procedure can be found in [10].

34 meetings had full agreement among the 3 annotators
about the most dominant person. For the audio-visual as-
sociation experiments, we used a subset of these meetings
where participants were seated all the time. This consisted
of 21 meetings, representing almost 2 hours of data.

3. Speaker Diarization
We use the speaker diarization method in [5] which em-

ploys an agglomerative clustering method to merge pairs
of speaker clusters iteratively according to the pairwise
Bayesian Information Criterion (BIC) score, which is also
used to determine when merging should stop. Each clus-
ter is represented as a Gaussian Mixture Model (GMM)
of frame-based cepstral features (MFCCs). Calculating the
BIC score for potential merge candidates is time-consuming
and can be made more efficient by removing unlikely merge
hypotheses with a faster scoring method. With these speed-
based improvements, speaker diarization outputs were ex-
tracted using increasingly faster versions of the algorithm.
Robustness testing was also performed by simulating differ-
ent single distant microphone sources with decreasing sig-
nal to noise ratio (SNR). More details about the feature ex-
traction process can be found in [5].

Audio Experimental Conditions : The various exper-
imental conditions that we used can be categorized into a
single distant microphone case and a individual close-talk



microphone as summarized in Table 1. For the first case,
a single audio stream was created by mixing individual
close-talk microphone data, i.e. ‘Mixed Headset’ or ‘Mixed
Lapel’ using a summation. For the latter condition, a sin-
gle microphone was selected from a microphone array from
either the table or ceiling sources.

Mixed Individual Close-talk
Microphone

Single Distant Microphone

A: Mixed Headset C: Single Table Microphone
B: Mixed Lapel D: Single Ceiling Microphone

Table 1. Summary of various experimental conditions.

As mentioned before, the agglomerative clustering
method is data-driven, so it is possible for the algorithm to
stop when the number of clusters is not equal to the num-
ber of participants. In our previous work [6], we introduced
experiments where the final number of clusters was fixed at
4 as well as allowing the algorithm to automatically select
the final number of clusters. These experiments did not ac-
count for cases when one or more of the participants did not
speak in the 5-minute meeting segment. Therefore, we re-
adjusted the rule by allowing the algorithm to stop naturally
before enforcing further iterations to merge pairs of speaker
clusters if the number was greater than 4.

In our previous experiments [6], the diarization results
were computed using the original meeting sessions which
lasted between 15 and 35 minutes. Speaker segmentations
were then generated by dividing the output into 5-minute
non-overlappingsegments to match those used in the human
annotations of dominance. Therefore, information outside
of the meeting segment in question was also used in the di-
arization process. To ensure a fairer experimental set-up,we
re-ran the diarization method such that each output was gen-
erated solely from the corresponding 5-minute meeting seg-
ment. The performance of speaker diarization is measured
by the Diarization Error Rate (DER), which is the sum of
missing speech, false alarms, and speaker cluster error gen-
erated from mapping the clusters to the ground truth speaker
segmentations using a dynamic programming method.

A summary of the DER using the shorter 5-minute meet-
ing segments is shown in Table 2 which shows the differ-
ent experimental conditions and their corresponding DERs,
signal-to-noise ratios (SNRs) and speed increases relative
to real-time. The terms ‘KLFM’, ‘PCFM’, and ‘NoFM’ re-
fer to the KL-divergence Fast Matching, Pitch Correlogram
Fast Matching, and No Fast Matching respectively (see [5]).
Conceptually these computationally efficient strategies can
be thought of as fast, medium, and slow methods. In an
experiment performed on the mixed lapel data, the ‘NoFM’
baseline system ran at1.22× real-time (RT), improved to
1.0×RT for the PCFM strategy and further improved to
0.77×RT for the KLFM case using the same experimen-
tal set up as we had used previously [5]. The rows and
columns of Table 2 have been labeled with letters and num-

SourceSNR
(dB)

Number of speaker
clusters≤ 4

Automatic speaker
cluster estimation

KLFM PCFM NoFM KLFM PCFM NoFM
A 31 33.17 32.17 32.52 33.78 32.83 33.16
B 22 34.71 34.19 34.94 36.47 35.91 36.35
C 21 35.34 34.94 34.94 36.14 36.19 36.16
D 18 35.94 36.22 34.85 35.96 36.89 36.55

1 2 3 4 5 6

Table 2. Diarization results (DER) where the labelsA-D refer to
the experimental conditions described in Table 1.

bers for easy reference. We can observe a decrease in the
average performance as well as a reduced sensitivity to the
SNR of the input signal compared to the chunked session-
based DERs in our previous experiments [6].

4. Computationally Efficient Video Features
To estimate the audio-visual association, we used a

frame-based visual activity feature that can be matched with
the speaking activity patterns. Visual activity features are
extracted from personal close-view cameras by re-using
some of the video processing used for video compression
[3]. We extracted the motion vector magnitude and the
residual coding bit-rate to construct an estimate of personal
activity levels using the method detailed in [7]. These fea-
tures are illustrated in Figures 2 (b) and 2 (c) respectively.

(a) (b) (c) (d)
Figure 2. Compressed domain video feature extraction. (a) Orig-
inal image, (b) Motion vectors, (c) Residual coding bit-rate, (d)
skin-coloured regions.

For each camera view, we estimate a participant’s activ-
ity levels by implementing a block-level skin-colour detec-
tor working mostly in the compressed domain which can de-
tect head and hand regions as illustrated in Figure 2 (d). To
do this, we use a GMM to model the distribution of chromi-
nance coefficients [12] in the YUV colour-space. Specifi-
cally, we model the chrominance coefficients,(U, V ), as a
GMM, where each Gaussian component is assumed to have
a diagonal covariance matrix. In the Intra-frames, we com-
pute the likelihood of observed chrominance DCT DC coef-
ficients according to the GMM and threshold it to determine
skin-colour blocks. These blocks in the Inter-frames are
inferred by using motion vector information to propagate
them through the duration of the group-of-picture (GOP).
In the presence of long GOPs, such as in the AMI meeting
videos, accumulated errors could lead to large areas of the
frame being falsely detected as skin-colour blocks. To pre-
vent this, we add an additional verification step, performed
in the pixel domain, to remove blocks that are erroneously
tagged as skin-colour blocks; this verification step is per-
formed only if a block is suspected to be a skin block.



For each frame the average motion vector magnitude or
residual coding bit-rate over all the estimated skin blocks
is calculated and used as a measure of individual visual ac-
tivity. The novelty of using these as visual activity features
for speaker association is that they are block-based and are
already computed during video compression. Compared to
extracting many higher resolution pixel-based features such
as optical flow, compressed-domain features are much faster
to extract, with a run-time reduction of95%.

While personal close-view cameras are used, the dis-
tance from the camera causes scale and pose issues, as
shown in some example shots in Figure 3. By averaging ac-
tivity measures over detected skin-colour blocks, we hope
to mitigate some of these issues. In addition, we also know
that people move even when they are not speaking, which
makes associating these visual activity features with the es-
timated speaker clusters challenging. The video capture re-
sults in 4 streams; one for each close-view camera. Each of
the 4 streams were represented either using the motion vec-
tor magnitude features (Vector) or residual coding bitrate
(Residue) with filtering of the skin-coloured regions.

Figure 3. Example screen-shots from the close-view cameras.

5. Estimating the Dominant Person
The results for estimating the most dominant person are

summarised in Table 3 where the best and worst results were
74% and 62% respectively. Interestingly, in three out of
the four cases where74% of the estimates were correct, the
fastest diarization strategy was used while three out of the
four worst results were produced from the slowest method.
Forcing the final number of clusters to be less than or equal
to 4 did not seem to affect the results. The results showed a
lack of sensitivity to the SNR compared to the DERs shown
in Table 2. This meant the highest performance was also
produced using an audio signal with the second worst SNR
and the fastest diarization strategy. Compared to the base-
line result of85% which was estimated using the headset
speaker segmentations, there was a decrease in performance
when noisy speaker segmentations generated from the vari-
ous speaker diarization methods were used.

6. Associating Speaker Clusters with
Unlabelled Video Channels

6.1. A Näıve Case
We used ground truth speaker segmentations (GT) cre-

ated from manual annotations for our initial association
analysis. In addition, to compare with the baseline results
presented for the most dominant person estimation task,
speaker segmentations from the audio signal taken from

Methods

S
ou

rc
es

S
N

R
 d

ec
re

as
e

0.68 0.68 0.74 0.65 0.71 0.74

0.74 0.68 0.68 0.62 0.65 0.62

0.74 0.65 0.71 0.74 0.68 0.71

0.65 0.68 0.62 0.65 0.68 0.62
1 2 3 4 5 6

A
B
C
D

Speed increase Speed increase

Table 3. Colour-coded representation of the results for thedom-
inant person task using diarization clusters generated from 5-
minute meeting segments where higher performance is shaded
lighter. The numbers are shaded differently for clarity only.

personal headset microphones (HS) were also generated.
These were associated with the two real-valued visual ac-
tivity features using the residual coding bit-rate (Residue) or
motion vector magnitudes (Vector). The headset segmenta-
tions were generated by extracting the speaker energy from
each headset and then thresholding this value to create a bi-
nary signal where 1 represents speaking and 0 is silence.

For each pair-wise combination of speaking and visual
activity channels, their corresponding normalised correla-
tion was calculated. We then matched the channels by us-
ing an ordered one-to-one mapping based on associating the
best correlated channels first. Three different evaluationcri-
teria were used to observe the differences in discriminabil-
ity of the data by varying the leniency of the scoring into
soft, medium and hard criteria :EvS gives each meeting
a score of 1 if at least 1 of the 4 speech and visual activ-
ity channels match correctly;EvM scores 1 if at least two
of the channels match correctly;EvH scores 1 only if all
4 visual activity channels are assigned correctly. The pro-
portion of correctly associated meetings using both visual
activity feature types are shown in Table 4 below. Surpris-
ingly, correlating the headset segmentations and Residue vi-
sual activity channels performed best, though the difference
in performance differs at most, by 2 meetings. Also, it was
also encouraging to see that even for the hard evaluation
strategy, the performance remained high for this case.

Audio Visual EvS EvM EvH

GT Residue 1 1 0.86
Vector 0.95 0.95 0.71

HS Residue 1 1 0.9
Vector 1 0.95 0.81

Table 4. Proportion of correctly associated speech segmentations
generated from associating visual activity from the close-view
cameras using(i) the ground truth speaker segmentations and also
(ii) individual headset microphones. See text for descriptionsof
the evaluation criteria.

6.2. Evaluating Speaker-Cluster to Video Mappings
The results shown in the previous subsection used rela-

tively clean segmentations generated from individual head-
set segmentations or from the ground truth. When the clus-
ters from the speaker diarization output is used, we can ex-
pect two issues to arise. Firstly, the number of speaker clus-



ters from the speaker diarization engine could be unequal to
the true number of participants. Secondly, we must quantify
the quality of the mappings. To do this, we computed the
pair-wise normalised correlation between(i) the speaker
clusters and visual activity features and(ii) the speaker
clusters and either the ground truth speaker segmentations
or those extracted from the headset microphones. The map-
pings for both cases were calculated again based on an or-
dered one-to-one mapping starting from the pair with the
highest correlation. If there were fewer speaker clusters
than motion channels, mappings were forced to ensure each
motion channel mapped to a speaker cluster.

In reality, there can also be more clusters than partici-
pants so more than one speaker cluster can be associated
with the same motion channel. We accounted for this by
running the association algorithm over all possible pair-
wise cluster-video combinations as a first-pass. Once 4
mappings were found, these were set aside and the remain-
ing clusters were mapped afresh to all 4 possible visual ac-
tivity channels using the same strategy, where the cluster-
visual activity channels with the highest normalised corre-
lation were matched first using the same ordered one-to-one
mapping procedure. After the second pass, a visual activity
channel can be mapped to one speaker cluster in the first and
another in the second, facilitating many-to-one mappings.

Using the mapping of the clusters to labelled speaker
segmentations, a scoring criteria is enabled where the map-
ping is true only when the corresponding GT or HS segmen-
tation is associated with the correct visual activity channel
through the corresponding speaker cluster. We used again
the three evaluation criteriaEvH , EvM , andEvS, which
assigns respectively a score for each meeting only when
all, at least two, or at least one of the mappings is cor-
rect. A fourth evaluation criterion,EvFu was introduced
to account for fuzzy cases where more than one GT or HS
speaker channel is associated to the same video channel.
Each meeting can have a maximum score of 4; each correct
match, at most 1. For each correct mapping, the score is cal-
culated as the reciprocal of the total number of participants
that have been associated with that particular visual activ-
ity channel. Finally, we integrated these association results
back into the dominance task by checking all correct map-
pings to see if they matched with the longest cluster length
(which we expect to be the most dominant person).

7. Results
The speech-visual activity association was performed on

21 5-minute segments where all the participants were al-
ways seated in their close-view camera. We tested using
the speech activity output generated from all the different
speaker diarization strategies and conditions described in
Section 3. Finally, we used both the ground truth segmenta-
tions and headset segmentations to evaluate the mappings.
In all, 16 different combinations of evaluation criteria and

Figure 4. Average, lowest, and highest performance resultsfor
each experimental condition and evaluation strategy.

reference segmentations were used and for each of these
combinations, we had 24 different experimental conditions
for the diarization output. From Table 4, we decided only to
use the Residue version of the visual activity features since
they gave the best performance. Figure 4 shows a sum-
mary of all the speech-motion association results using the
ground truth (GT) or headset (HS) segmentations and the 4
evaluation criteria EvH, EvM, EvS and EvFu.

Table 5 shows the results using our 4 evaluation strate-
gies and different reference speaker segmentations. Thereis
a slight improvement in performance when using the head-
set rather than ground truth speaker segmentations to evalu-
ate the quality of the clusters. Also, a degradation in perfor-
mance is observed as the evaluation criteria becomes more
strict, as highlighted in Figure 4. The best average score was
achieved by theEvS HS case with an average and high-
est performance of93% and100% respectively. Closer in-
spection of the experiments showed that there were 5 cases
where100% performance was achieved usingEvS HS (
and 2 for theEvS GT case). These were mostly clusters
created using the diarization strategy with a medium speed
increase (PCFM). In 4 of the cases, the input audio source
used a true distance microphone source and 3 estimated the
number of speaker clusters automatically. For the softer
scoring criterion,EvFu, we found that the performance
was better than the corresponding results usingEvH , in-
dicating that there were a number of cases where there were
many-to-one or many-to-many mappings.

GT Speaker Segs HS Speaker Segs
EvH EvM EvS EvFu EvH EvM EvS EvFu

Average 0.22 0.58 0.88 0.54 0.25 0.69 0.93 0.6
Max 0.33 0.86 1 0.64 0.43 0.95 1 0.72
Min 0.1 0.33 0.76 0.46 0.14 0.33 0.76 0.51

Table 5. Summary of the performance using all 4 performance
evaluation strategies and either the ground truth or automatically
generated headset speaker segmentations. The evaluation criteria
are as described before.

Finally, Table 6 shows the percentage of meetings where
the association of the longest speaker cluster with the cor-
rect visual activity channel was made. Again, experi-
ments were conducted with either ground truth and head-
set speaker segmentations for evaluation. We were unable
to complete a thorough examination of these experiments



since the data used for the dominance estimation task and
cluster-video association did not overlap fully. 15 out of the
34 meetings where the most dominant person was selected
by all 3 annotators also contained seated participants for the
entire segment. To maximise the number of samples, we
used the same subset of 21 meetings as those used for the
audio-visual association experiments. The best performing
dominance and association results were achieved by using
the headset segmentations with an average performance of
70% where there were 3 cases where a performance of86%
was achieved. Two of these cases used the true single dis-
tant microphone sources (C and D) and one of these used
the fastest diarization strategy. However, in each of these
three best cases, the number of speaker clusters was fixed
to be less than or equal to four so it was necessary to know
the true number of participants a priori. Again, using the
ground truth segmentations lead to slightly worse results.
On closer inspection there were some experimental condi-
tions where using the headset speaker segmentations led to
the correct pairing of speaker clusters and motion channels
in 6 more meetings compared to the same conditions using
the ground truth speaker segmentations. It is interesting to
note also that when the same experiments were run using
the diarization output from chunked version of the longer
meeting sessions, there was one case

GT HS
Average 0.64 0.7

Max 0.81 0.86
Min 0.52 0.48

Table 6. Percentage of meetings where the correct mapping was
given to the cluster with the longest speaking length.

8. Conclusion
We conducted experiments to investigate the challenges

in identifying the most dominant person in meetings using
both audio and video data. To our knowledge, our experi-
ments on audio-visual association on almost 2 hours of data,
used the highest degree of complexity in terms of the num-
ber of people that needed to be matched to a single audio
source. Our results show that it is possible to associate
the dominant speaker with a set of visual activity candi-
dates quite robustly using a simple greedy mapping method.
Although there was a decrease in performance in both the
DER, dominance performance and speaker-visual activity
mappings when the diarization output was computed from
shorter meeting segments, this decrease was not always sig-
nificant and showed some surprisingly good results even
with an input audio signal with the worse SNR. In terms
of computational efficiency, and practical use, conditions
(D,1) provided the best all-round performance for estimat-
ing the dominant person audio-visually. We acknowledge
that out experiments had few data points so it is difficult
to draw strong conclusive remarks about the differences in
performance between the strategies. To assess the perfor-

mance of both the dominance and audio-visual association
more fully, we will need to represent each person’s motion
effectively when they are not seated so that a larger data set
can be tested.
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