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Abstract

A significant problem in automatic scene interpretation is the ability to per-
form contextually meaningful segmentation of both static and moving images
using a bottom-up approach. We examine and propose an extension to Kadir
and Brady’s Scale Saliency Algorithm for quantifying temporal saliency and
performing automatic spatial and temporal scale selection.

1 Introduction

Accurate interpretation of a visual scene is a highly selective process that requires us to
ignore some aspects of the visual information, deemed to be either noise or irrelevant,
depending on the context. The effectiveness of this selection process depends heavily on
how context is represented. Intuitively, contextual information about a visual scene lends
itself naturally to a top-down based representation. However, a significant problem in
such a representation of contextual knowledge is that it is not readily measurable by the
information that can be extracted from the imagery data without being made too scene-
specific. Itis therefore both necessary and attractive to develop a bottom-up model that is
capable of extracting image features which represent something contextually meaningful.
We consider a key to solving this problem is the ability to quantify holistically the spatial
and temporal saliency of local image features.

Popular techniques for extracting salient local imagery features adopt orientation fil-
ters to identify what is considered to be a salient part of an image [5, 1]. However, we
argue that such information is not neccessarily salient since features that produce a higher
magnitude reponse from orientational filters are largely dependent on the choice of the

Figure 1: The picture on the right shows the effects of just applying a horizontal first order
gaussian filter to the image on the left. Although the people in the foreground are clearly
of more interest in the picture, it is the cluttered background that exhibits the highest
magnitude responses.



basis functions which can be rather arbitrary. If an object of interest is placed against
a cluttered background, using orientational filter responses to identify salient parts in an
image would mean that even the cluttered background could be extracted readily as a
significant part of the scene. The problem is clearly shown by the example in Figure 1.
A statistical approach to image description might be more sensible since using a prob-
abilistic representation means that no information is thrown away by taking local consid-
erations alone. An example of this approach was proposed by Kadir and Brady [3] in
which entropy is used to describe parts of an image in terms of varying scales in space.
Entropy is a good way of representing the impurity or unpredictability of a set of data
since it is dependent on the context in which the measurement is taken. They argue that
saliency is local unpredictability or high entropy, where local entropy is defined as:

Hp(S,X) = _dED Pd.sx 1002 (Pd,sx) 1)

where pg s x is the probability density function (PDF) of a local neighbourhood prescribed
by the scale or radius of this neighbourhood s, d is one of a set of D possible values which
are used for approximating the integral of the PDF as a histogram (e.g. intensity values),
and x is the point around which the local neighbourhood is defined. The novelty of this
approach is that features are selected based on the variation of the entropy (#p) over
different scales. The entropy-scale characteristics of a particular local neighbourhood
represents the local image structure or local context. Kadir and Brady proposed using
an inter-scale saliency measure #p to describe the relation between entropy of a local
neighbourhood at two different scales:

&
Wp(S,X) = 751 dzD |Pd,sx — Pd,(s—1) x| 2
€

The scale at which the entropy peaks is deemed the most suitable scale to describe an
image since it is the scale at which the image becomes unpredictable or more difficult to
model [4]. Kadir and Brady further suggested that a saliency measure can be obtained
from the scalar product of the entropy and inter-scale saliency at the scale value sp at
which the entropy peaks:

9D(Sp,X) = Hb(Sp,X) Wp(Sp,X) 3

This was designed to take into account to some extent the local nature of the peak. The
scale at which the peak entropy occurs was defined as:

Sp={s: #p(s—1,X) < #Hp(s,X) > Hp(s+1,x)} 4)

However, Kadir and Brady’s model of saliency using an entropy measure between two
adjacent scales does not always depict saliency accurately. Figure 2 shows an example
of the variation of entropy over scale for three image regions of different characteristics.
The conclusion is that since the eye region has a much higher entropy value and a flatter
pdf, it exhibits much more unpredictable behaviour than the sky region. As expected, we
have been able to separate foreground from background. However, the entropy values of
the cluttered region of the tree are the largest and exhibits highly unpredictable behaviour,
though we expect this region to be background. But inspection of the entropy-scale char-
acteristic shows that the tree region has a more similar response to the sky region. So the
entropy-scale curve tells us much more about the inherent regions of interest in the image.
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Figure 2: (a) A cluttered image with, saliency values calculated at three contrasting points
using the spatial saliency algorithm.(b) The entropy-scale characteristics of the three re-
gions, where the vertical lines indicate the lowest scale that corresponds to a peak in
entropy. (c-e) Enlarged versions of the locations of interest where the size of the circles
indicate the spatial scale at which their corresponding entropy peaks. (f-h) The intensity
PDFs (approximated by histograms) taken at the scale at which the entropy peaks for the
sky, eye and tree region respectively. The PDF for the eye region exhibits are much flatter
compared to that of the sky region. Hence their corresponding entropy-scale characteris-
tics show that the eye region has a much higher entropy value at all scales. However, the
cluttered background of the tree region has a much flatter PDF and a higher entropy value
than either the eye or sky regions. The entropy-scale characteristic indicates in (b) that
the sky and tree region exhibit very similar variations compared to that of the eye region.

Referring to Figure 2 (a) the eye region has a more pronounced peak in entropy and
hence a higher saliency score compared to the sky region. However, the cluttered back-
ground region has an even higher saliency value than either of the other two regions. This
suggests that calculating the inter-scale measure #p from just one adjacent scale is not
enough.

Automatic scene interpretation of a real-world video footage suffers from the presence
of cluttered moving background, occlusion, temporally overlapping motion from multiple
or single entities and appearance or disappearance of objects. The advantages of extract-
ing features using an entropy-scale measure is that it can represent a statistical model of
the variation of a particular image region over space and time, potentially capable of sep-
arating foreground from non-stationary background regions in a scene, and identifying
temporally salient patterns of change.

In this paper, we extend Kadir and Brady’s scale saliency model to quantifying tem-
poral saliency for performing automatic spatial and temporal scale selection. In Section
2, we introduce the concept for bridging the gap between spatial saliency and temporal



saliency. In Section 3 we formulate the notion of temporal saliency. A brief description
of the algorithm is provided in Section 4. Experiments are shown in Section 5 and we

conclude in Section 6.

2 From Spatial to Temporal Saliency

Let us first illustrate the potential in taking into account more than just two adjacent scales
in measuring saliency. We extend the scale saliency equation to inter-scale saliency on
both side of a peak as follows:

yD(sp,x) = }[D(Sp7X) WDpeak (5)

where
WD peakc = WD (Sp,X) W (Sp+1,X) (6)

The new term wp ., measures the inter-scale entropy between the peak scale and the
next scale up. The immediate effect of the new interscale measure can be seen using the
previous examples shown in Figure 2. The saliency measure for the cluttered, the eye and
the sky regions have changed from (6.18,4.27,0.03) to (6.94,8.05,0.00) respectively.
We further suggest that this inter-scale measure becomes more significant if the regions
of interest in the image are non-stationary over time.
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Figure 3: Entropy-Scale characteristics of a dot passing over a plain background. (a)
the same sequence of images with three different sizes of kernel. (b) the entropy scale
characteristic centred at t = —1. (c) the entropy-scale characteristic att = 0.

To this end, we extend the notion of saliency from a measure of spatial unpredictabil-
ity to temporal unpredictability. At its most simple form, something temporally unpre-
dictable occurs when a particular intensity distribution appears or disappears from a sam-
pled neighbourhood. Figure 3 shows a synthesised sequence of a white dot moving from
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Figure 4: Entropy-Scale characteristics of a dot passing over a plain background at a
slower speed than in Figure 3. (a) the same sequence of images with three different sizes
of kernel. (b) the entropy scale characteristic centred at t = 0 for 4 time scales and 3
spatial scales.
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left to right on a black background. The manually calculated graphs in the rightmost col-
umn show variation of entropy over temporal scales at a single spatial scale, centred at
t=0. The two graphs (b) and (c) show the entropy-scale characteristics centred at time
t = —1 and t = O respectively. The entropy-scale characteristic taken at t = 0 has a more
pronounced peak at the middle scale in space and time than that evaluated att = —1. This
example demonstrates that the entropy-scale characteristic is sensitive to temporal shift as
well as spatial shift. If the dot moves slower across this kernel, as seen in Figure 4, then
the peak in entropy is seen at a higher time scale.

3 Quantifying Temporal Saliency

To calculate temporal saliency, we consider that PDFs at different scales are generated
from spatiotemporal cylinders where the entropy at a particular spatiotemporal cylinder
is defined as:

Hp(Ss,&,X) = — dz Pd.ss.5 x 1002 Pd s 5% (7
D

where s is the radius of the local spatial neighbourhood, s is the interval of the local
temporal neighbourhood, x is the point in space and time, around which the cylinder is
formed, and d is one of a set of D possible values which are used for approximating the
integral of the PDF as a histogram (e.g. intensity values) of a local neighbourhood.

The inter-scale saliency measure %/p becomes a two dimensional matrix, representing
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Figure 5: Inter-scale volumes.



the differential of the entropy for varying scales in time and space. A normalisation factor
is calculated for cylinderical volumes rather than circles [2]. As shown in Figure 5, the
set Xq U Xp is used to create the PDF at scale {ss,&} and X is used to create the PDF at
scale {ss,s—1}. Hence intertemporal scale saliency is defined as:

Wp(Ss, &, X) =& dzb |Pd.ss.5.x — Pd,ss,s—1.x] (8)
€

where § is the inter-scale normalisation factor for the cylinderical volumes shown in
Figure 5. Taking into account both sides of the peak, 9, is again defined as the scalar
product of the inter-scale saliency measure and its entropy value evaluated at {Sg, Sy, }:

D/D(Spsvsptvx) = HD(Sps,Spt,X) WDpeak (9)
where
preak = ‘WD(SpS,Spt,X) "I/V|:)(Sps,8pl +1,x) (10)
where
Sp = {S* Sspea "\ Stpeak /N Setpeaic (11)
and
Sk = Hp(S—Lls,X) < Hp(Ss,&,X) > Hp(Sst1,5.X)
Spek = HD(S,&-1X) < Hp(ss,sX) > Hp(Ss,&+1,X) (12)
Sty = Hp(S—1,5-1,x) < Hp(Ss,&,X) > Hp(ss+1,5+1,X)

where ss, is a spatial scale peak, s, is atemporal scale peak, and sy, is a spatiotem-
poral scale peak. It is important to clarify that this definition of temporal saliency favours
peaks found in both inter-spatiotemporal scale-space with high inter-temporal scale dif-
ferences in PDF, whilst only inter-temporal scales are used to calculate Wp, . Itis likely
that if a inter-spatiotemporal saliency measure was used, the inter-spatial element would
need to have a smaller weighting on the measure to avoid sensitivity to cluttered back-
ground features.

4 The Temporal Saliency Algorithm

1. Firstly, the image is divided into a grid for reduced computation. This defines the
granularity of the motion and size of objects to be detected in the image. If there is
a high degree of variation in entropy within a grid, the algorithm is performed on a
subdivided part of that grid.

2. The entropy-scale characteristics, #p and inter-scale saliency, wp is calculated,
centred at each grid location and time frame for all {{ss,s} : {1,1} < {ss,5} <

{ Ssraxs St} -

3. A saliency measure is calculated based on the entropy value between temporal
scales at the location of the peaks in entropy over temporal, spatial and spatiotem-
poral scales.

4. After a suitable number of frames have been sampled, the peaks in entropy are
ranked according to their corresponding saliency value.

5. The most salient time intervals and spatial regions are located.



5 Experiment

Experiments were run for 4 different indoor and outdoor sequences. The first is a sequence
from an outdoor scene that is highly cluttered and under constant change. The pitfalls of
analysing this scene is that there are rapid variations in lighting and the windy conditions
means that a bush at the bottom of each frame, is prone to a lot of motion. The wind also
causes the camera to move on several occasions, causing the entire scene to shift slightly.
Each frame was divided into a 7 x 10 grid. For each grid location, the entropy-scale
characteristic was calculated. Saliency values were calculated for any spatiotemporal
peaks that were found where {Ss,, Smex + Was {20,701}, and the pixel grid size was 31.

The ranked saliency results indicated two clearly separable events as shown in frames
{F-H} and {I-K} of Figure 6. The top row of Figure 6 shows three different methods for
locating salient behaviour. It is clear to see that the temporal saliency algorthm does not
pick out as much global motion as temporal frame differencing and hence there is some
background motion supression. In particular, the noisy motion of the bush at the bottom
of the scene had much lower saliency values, compared to that of the moving car. The
highest saliency value caused by the bush and moving car was 0.55 and 8.37 respectively.
The strong background motion supression is further demonstrated by Figure 6 (e) where
the saliency is plotted in order of rank for a typical frame of the sequence. In Figure 6 (b),
a higher percentage of salient locations are shown for the spatial saliency algorithm since
this produced much fewer salient results.

Figure 7 shows 3 of the most salient frames for 3 different sequences from both indoor
and outdoor scenes. In each case, meaningful salient motion, within the context of the
chosen sequnces, was detected. Column (a) of Figure 7 shows the results of from an
extremely busy traffic scene. Within this sequence, there are are many cars that move
along the roads. However, at a certain point, a car stops and reverses onto oncoming
traffic. The grid size was set particularly small at 11 in just this set of results in order
to accomodate for the large amounts of diagonal motion in the scene. There is a lot of
noisy motion caused by the traffic, which the algorithm finds difficult to separate from
more unusual motion, such as the reversing car. This particular event was still amongst
the more salient time intervals that was detected and is highlighted at peak B of Figure
6. However, the saliency value of this particular event is not the highest for the saliency
measures calculated, centered at this frame.

Column (b) of Figure 7 shows the results from a simulated scene of a drinks shop.
The scene is highly cluttered and the shop keeper to the right of the frame causes some
noisy background motion but this is not considered salient compared to the motion of the
customer. The results clearly mark out two different customers and the graph at the top of
column (b) indicates time-localised clusters of salient motion.

Column (c) of Figure 7 shows a scene taken through a shop window. Hence the se-
quence has many light reflections, and sudden changes in light caused by the poor quality
of the video capture. The experiment was run over a relatively short sequence so time-
localised peaks in the graph of column (c) are not apparent. The circles represent salient
motion detected over a maximum of 21 scales. The results indicate different stages of
activity for two pedestrians walking past the window. There are some anomalous circles
which were caused by the sudden change in lighting though, these locations tended to be
less salient.



6 Conclusion

We have shown that it is possible to quantify effectively, different types of temporally
varying activity using a purely bottom up approach. The problems with automatically
interpreting real scenes is that it is very difficult to separate noisy background clutter from
salient motion. Hence using a contextually meaningful approach has meant that whilst the
noisy background clutter is detected, its response tends to be much lower in comparison
to other more salient parts of a scene. We have demonstrated that it is possible to suppress
such background clutter, as well as small motions from a moving camera, and subtle
lighting changes, using a relatively simple algorithm.

The disadvantages of the temporal saliency algorithm is that it is not possible to iden-
tify whether salient motion occurs before or after the central frame at which it is detected.
Due to the algorithm’s sensitivity to shift, it is possible to some extent, to track salient
objects in a scene, which is shown most clearly in column (c) of Figure 7. A simple mod-
ification would be to correlate the salient locations with the resultant regions found using
consecutive frame temporal differencing. However, this would not provide information
about temporally salient intervals.

The algorithm needs to be modified so that it takes into account inter-spatial and
inter-temporal entropy-scale responses. Hence some form of meaningful tracking can be
achieved from clustering based on, for example, the entropy scale characterstic between
a local neighbourhood of grid cells. Furthermore, it will be possible to reduce compu-
tational complexity by using dynamic programming to concentrate computation on more
localised areas that are deemed to be more salient. Another method to reduce computa-
tion, would be to group salient activities into different levels of levels of complexity using
a hierarchical approach. This would also aid classification the process.

As yet, the algorithm is not able to distinguish between rareity and saliency. In one
particular experiment, the most salient feature of a busy traffic scene was the light reflect-
ing off a vehicle. Such anomalies would be ranked out of significance if the algorithm
was run over a longer time intervals, but only provided enough occurrences were found.
However, if the algorithm could generate a model of the scene whilst detecting salient be-
haviour, it will be able to incorporate this into its computation and further suppress noisy
background clutter.

Overall, the algorithm shows great potential for a bottom-up approach to scene inter-
pretation. It is able to supress background clutter, though modifications need to be made
in order to segment salient spatiotemporal regions within a scene.
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Figure 6: Detailed study of the results from a highly cluttered scene run over 60 frames.
(a) consecutive frame temporal differencing using a threshold of 20, (b) 10% most salient
regions using the spatial saliency algorithm, and (c) the 5% most salient regions using the
temporal saliency algorithm. (d) The highest saliency value at each frame. (e) Typical
saliency values centred at one frame plotted against rank. Bottom two rows show the cen-
tral frames indicated in (d) for peaks (A-F) respectively. The circles in show the spatial
location of the salient motion: black circles are the top 10% in (b) and top 5% in the
rest, white circles are the 1% most salient locations, black boxes are manual indications
of where salient regions exist. The size of the circles indicates the spatial scale at which
the entropy peaked. If the circles do not appear in a visually salient region, it is likely
that salient motion occurred before or after the current frame. The circles appear sym-
metrically in time about the central frame hence it is not possible identify whether salient
motion at a particular time scale occured before or after this central frame. For clarity,
only salient regions whose temporal peak occured within a sensible interval around the
central frame are shown.
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Figure 7: Results from a mixture of different indoor and outdoor scenes. (a) Outdoor
scene of a busy road run over 1400 frames. (b) Simulation of a drinks shop run over 372
frames . (c) Cluttered scene through a shop window run over 150 frames. The circles
indicate regions of salient motion. The top row shows the highest saliency value centered
at each frame. The letter of each marked peak in saliency is shown in the bottom right
hand corner of the corresponding frame. The white circles show the top 1% whilst the
black shows next 4%. The black boxes show manually selected salient regions. For
clarity, of the top 5% most salient locations, only those which resulted in temporally
salient peaks at temporal scales s < 5 are shown .Circles that do not appear directly
in line with the salient moving object of the frame are caused by salient motion which
occurs before or after that frame. Clearly, from inspection of the frames, it is possible to
interpolate the salient motion of the objects.




