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ABSTRACT

In this paper we address the problem of estimating who is speak-
ing from automatically extracted low resolution visual cues in group
meetings. Traditionally, the task of speech/non-speech detection or
speaker diarization tries to find “who speaks and when” from au-
dio features only. In this paper, we investigate more systematically
how speaking status can be estimated from low resolution video We
exploit the synchrony of a group’s head and hand motion to learn
correspondences between speaking status and visual activity. We
also carry out experiments to evaluate how context through the ob-
servation of group behaviour and task-oriented activities can help to
improve estimates of speaking status. We test on 105 minutes of
natural meeting data with unconstrained conversations and compare
with state of the art audio-only methods.

Index Terms— visual focus of attention, speaker detection.

1. INTRODUCTION
Traditionally, voice activity detection or speaker diarization has been
used predominantly in the speech processing community as a pre-
processing step for tasks such as speech recognition and other more
semantically high-level tasks such as dialogue act recognition. Re-
cently, it has been shown that non-verbal behaviour using just the
extracted speaker turn patterns can yield useful and robust features
for tasks such as estimating dominance [1], or roles [2] in conversa-
tions. Such research shows that semantically high-level information
need not be extracted fron verbal cues. From a privacy perspective,
it would be highly desirable to estimate who is speaking without
the need to record audio content from private conversations, which
is perceived to be quite invasive even if only prosodic features are
extracted. In addition, in a large cocktail party or during corpo-
rate team-work exercises there can be much background noise which
makes distinguishing voices robustly difficult.

This paper addresses the problem of estimating speakers in four-
participant meetings when only low resolution video data is avail-
able for testing, and audio-visual data for training. We present and
compare novel approaches using both supervised and unsupervised
models that investigate the extent that head and hand motion can be
used to aid the estimation of who is speaking. In addition, we intro-
duce supervised models that integrate different contextual cues such
as the visual focus of attention (VFOA) of participants in the meet-
ing and also activity on a slide screen to estimate speaking status.
The main emphasis and novel contribution of our work is to study
how head and hand activity features can be correlated with speaking
status. Previous work which estimate how either gestures are re-
lated semantically to speech [3] have used high resolution features.
To our knowledge, there has been no work that presented how low
resolution visual features from the upper torso contribute to the the
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Fig. 1. Flow diagram of our approach.

estimation of speaking status; we consider low resolution video to
contain faces which are captured at around 20 pixels in height.

In the audio domain, speech detection from independent head-
set microphones (IHM) has been attempted by Wrigley et al. [6].
They used a Gaussian mixture model (GMM) to represent acous-
tic features which was then used to train an ergodic hidden Markov
model (HMM) to estimate 4 classes related to speech and cross talk
in meetings. When head-set microphones are not available, speaker
diarization can be used. This tries to identify ‘who spoke when’ [7],
which is typically approached by using an unsupervised agglomer-
ative clustering method to identify regions of speech (after filtering
out non-speech), and estimate the number of speakers. However, it
is vulnerable to errors during periods of overlapping speech, even
when multiple audio sources are used to estimate delays between
captured audio signals. One solution is use visual cues to solve the
problem audio-visually [8, 9, 10] but improvements are not always
consistent so it is difficult to conclude how when they are useful.

Much previous work that exploit temporal correspondences be-
tween speech and vision have tended to assume that the motion from
the mouth is the principal visual manifestation of speech [11, 8].
However, there is much evidence from both social psychology [12]
and computational methods [13, 9] to suggest that speaking in con-
versations can manifest itself in broader body motions, which psy-
chologists suggest aid cognitive communicative processes [12].

Speaker locationing using visual focus of attention (VFOA) has
been addressed for two to three-person scenarios by Siracusa et al.
[4] with good results but they used high resolution audio-visual sen-
sors. Rienks et al. [5] used magnetic sensor information to esti-
mate the speaker based on just each person’s VFOA in discussion-
only scenarios. They found that human judgements performed sig-
nificantly worse than computational modelling of the same features
which suggests that using VFOA alone may not be sufficient.

A summary of our approach is shown in Fig. 1 and is descrip-
tions are arranged:- Section 2 describes the meeting data that we use;
Section 3 (Fig. 1 (a)) describes both the motion features and esti-
mates of head pose and contextual features that were extracted from
the video streams; Section 4 (Fig. 1(b) and (c)) describes the dif-
ferent methods we use to estimate the speakers from the visual cues;
Section 5 shows and discusses the experiments that were carried out;
and Section 6 provides some concluding remarks.
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Fig. 2. (a) Plan view of the meeting room. (b) Centre camera view.

2. DATA
We used meeting data from the Augmented Multi-Party Meeting
(AMI) corpus captured in an instrumented meeting room (see Fig.
2). These meetings were created from teams of four who were asked
to design a remote control. The meetings were not scripted and team
members had free use of a slide screen for presentations. The meet-
ing room has 4 close-view cameras, capturing each individual par-
ticipant (see Fig. 3(a)). There are also 2 side-view cameras which
capture 2 people at a time, as shown in Fig. 3 and a centre camera
that captures everyone and the slide screen. Each participant wears a
headset microphone and there is also a microphone array set on the
table around which the participants sit.

3. FEATURE EXTRACTION
3.1. Estimating Visual Activity
From the social psychology literature, we know that people move
when they talk [3]. Therefore, measuring individual visual activ-
ity can give us a good indication of whether someone is speaking
or not. We estimate body motion in the close-view video streams
by extracting visual activity features directly from the compressed
domain. The approach is based on features proposed by Yeo and
Ramchandran [14]. The videos we use have been compressed with
MPEG4 encoding using a group-of-picture (GOP) with a{I-P-P-...}
structure; the first frame (I) is intra-coded, and the rest (P) are pre-
dicted. During encoding, motion vectors are obtained by matching
blocks between consecutive frames using motion compensation. The
difference between the source and predicted pixels (residue) needs
to be encoded. The number of bits required to encode the quantised
DCT coefficients is called the residual coding bitrate. An example
of the residual coding bitrate extracted from a close-view camera is
shown in Fig. 3(a). At each frame, the visual activity of each per-
son is the average of the residual coding bitrate over all skin regions
in each frame. Skin-colour regions are detected by modelling the
distribution of the DCT of the chrominance coefficients in the UV
colour space using a GMM [15].

When only 2 side-view cameras are available, 2 people are cap-
tured at a time so we implement a compressed domain, modified ver-
sion of [20] to automatically divide the frame into two halves, thus
separating the two people. For each frame, we construct a horizontal
profile by accumulating the number of detected skin-colour blocks
in each column, (see bottom of Fig. 3(b)). K-means clustering is
used to find the locations of the two peaks. The cluster centres are
initialised to the locations of the peaks found in the previous frame.
The boundary, shown as a green vertical line, is the mid-point be-
tween the two peaks. We could have simply divided the side-view
cameras equally in two but the automatic division provides a more
robust estimate if one person leans towards the other to grab some-
thing or the position of the seats are changed. Once the left and right
region of each camera-view is separated, we treat the two portions
of the frame as two separate video streams. We average the residual
coding bitrate over the skin-colour blocks in the relevant half of the
frame to get theHalves feature.

(a) (b)
Fig. 3. (a): Example of the residual coding bitrate in the close-view
cameras. High: red; Low:blue. (b): Horizontal and vertical profiles
of the skin blocks (red) and the estimated boundaries (green lines)
between the two people and their respective head and hand regions
in the side-view camera.

Taking the average residual coding bitrate over the side view
cameras led to noisier estimates of visual activity than extracting
them from the close-view cameras since head and hand motion is
captured. Head and hand motion tends to be asynchronous for a
speaker so averaging over all skin colour regions biases the activ-
ity values. To prevent this, we first take the average residual coding
bitrate for the head (Head) and hand (Hand) regions before tak-
ing the maximum;MaxHH = max(Head,Hand). Head and hand
motion is extracted by dividing each half of the side view using a
vertical profile of the skin-colour blocks of the frame as shown by
the vertically oriented histograms in Fig. 3(b). The dividing points
between the head and hand regions are estimated in a similar fashion
as before and are shown by green horizontal lines in Fig. 3(b); an
upper bound is used to remove spurious detections of skin colour.

3.2. Estimating Head Pose
The head pose of each person is used to estimate people’s VFOA
in the pixel domain. To estimate people’s head location and pose
we rely on a Bayesian formulation of the tracking problem solved
through particle filtering techniques as proposed by Ba et al. [16].
We applied the head tracking method in the side-view cameras.
Given an initial head location, the tracker iteratively estimates peo-
ple’s head location and pose. At each timet, the tracker outputs the
head locations in the image plane and the posesθt for each person.

3.3. Slide Change Detection
To detect the slide changes we used the method which works in the
compressed domain proposed by Yeo and Ramchandran in [14]. A
slide change variable is used to model contextual information for
visual attention recognition. Slide changes, captured by the centre
camera (see Fig. 2(b)), correspond to temporally localised peaks of
the residual coding bitrate in the region corresponding to the projec-
tion screen. Thresholding the amount of residual coding bitrate in
the projection screen area gives the slide change instants. Given that
the slide changed at timet, we build a slide activity variableat that
stores the time that has elapsed since the last slide change.

4. ESTIMATING SPEECH ACTIVITY FROM VIDEO

4.1. Unsupervised Model
A simple method of estimating speech activity is based on findings
indicating that those who speak tend to move more [13, 9]. We im-
plement a simple algorithm that estimates whether someone is the
principal speaker based on who moves the most over a sliding time
window. To ensure that a person’s motion is consistently high and
not just very high for a short period of time, we count the number
of times someone’s motion is the highest during the window (see
Algorithm 1). Each speaker’s visual activity is normalised by their
maximum before applying the algorithm to ensure that the system is
not biased to people who tend to move more in general.



foreach t in Windowdo
i = argmaxk∈{1..4}(m

k
t );

V otesi = V otesi + 1;
end
j = argmaxk∈{1..4}(V otesk);
S

j
t = 1;

Algorithm 1 : Estimating speaking,S, from visual activity,m.

Fig. 4. Supervised models;HMM andFull.

4.2. Supervised Models
The unsupervised method can only estimate one person speaking at
a time so will not account for periods of overlapping speech. An-
other method is to just assume that each person is likely to move
when they speak; we infer that they speak when their visual activity
is above a certain threshold. Before thresholding, each individual
visual activity stream is normalised by dividing by the maximum for
that meeting session. We will refer to this method later asThres.

We now introduce a more complex model which takes into ac-
count other aspects of the meeting dynamics such as presentation ac-
tivities using the slide screen and the VFOA, which has been demon-
strated to be an important cue for estimating who is speaking [5].
The goal of the full-context model is to introduce in a principled
fashion, information about people’s visual attention to estimate their
speaking status. The hypothesis is that a group’s visual attention is
more likely to converge on the speaker than on others so we use this
contextual information for estimating the speaking status.

We use the the head pose observation model and hidden state
dynamical model from our previous work [17]. We denoteSt =
(S1

t , ..., S4

t ) to be the speaking states of the four meeting participants
at timet. Sk

t = 1 when personk is speaking and 0 otherwise.ft =
(f1

t , ..., f4

t ) denotes the visual attention states of the four people.
For each person, the set of possible visual attention targets has been
discretised and restricted to a set of seven targets: the other three
people, the table, the white board, the slide-screen and unfocused
when the person is not visually looking aany of these targets.at is an
observation variable built from the detected slide change that stores
the elapsed time since the last slide change.θt = (θ1

t , ..., θ4

t ) are the
head pose observations for each person. Finallymt = (m1

t , ..., m
4

t )
are each person’s estimated visual activity (see Section 3.1) over a
window of fixed size centred on framet.

Our goal is to jointly estimate the speaking statesSt and vi-
sual attention stateft given the observations (see Fig. 4(a)). This
problem can be posed in a probabilistic framework as finding the
sequence of hidden statesS1:T andf1:T that maximises the poste-
rior probability distributionp(S1:T , f1:T |m1:T , θ1:T ) which accord-
ing to the independence assumption implied by the graphical model
displayed in Fig 4(a) can be factorised as:

p(S0, f0)

T
Y

t=1

p(mt|St)p(θt|ft)p(St, ft|St−1, ft−1, at) (1)

The probability density function in Eq 1 is defined by five terms. The
first is the initial state priorp(S0, f0) that we modelled by a uniform
distribution. The second is the motion observation modelp(mt|St)
(labelled asHMM in Fig 4(a)) modelling the relation between peo-
ple’s speaking observations and their speaking states. We factorise
the motion observation model asp(mt|St) =

Q

4

k=1
p(mk

t |S
k
t ) the

Fig. 5. Probability distributions ofMaxHH givenSt = 1 and0.

probabilityp(mk
t |S

k
t ) for each person when (Sk

t = 1)) and (Sk
t =

0), is accumulated from training data (see Fig. 4(b)).
The third term is the head pose observation modelp(θt|ft) re-

lating people’s head poses to their visual attention. For each visual
targetv, p(θk

t |f
k
t = v) = N (θk

t , µk,v, Σk,v) is modelled as a Gaus-
sian distribution with mean and covariance(µk,v, Σk,v). The pa-
rameters(µk,v, Σk,v) can be either learned or predicted according
to the geometry of the room. The last term is the dynamical model
and represents the temporal evolution of the hidden states given the
projection screen activities. It can be factorised as:

p(St, ft|St−1, ft−1, at) = p(ft|ft−1, St, at)p(St|St−1,at) (2)

wherep(ft|ft−1, St, at) models the evolution and dependence of
the the visual attention state given each person’s speaking status and
the slide screen activity. This term encodes the relationship between
the visual attention and speaking behaviours.p(St|St−1, at) models
the evolution of the speaking status states given the time elapsed
since the last slide change, representing the dependencies between
the speaking statuses and the projection screen activities. The full
context model will be referred to asFull.

5. EXPERIMENTS
First, we compare the performance of the unsupervised method (Sec-
tion 4.1) using different parts of the body, shown in the upper part
of Table 1. We discuss the results in terms of F-measure; the pre-
cision and recall are provided for interest. The precision represents
the false detections and the recall measures missed detections. The
f-measures is the harmonic mean of the precision and recall.

We performed experiments on 105 minutes of meeting data con-
sisting of 21 5-minute meetings with 4 groups of seated people.
Boundary estimation was evaluated by using annotations of bound-
ing boxes of speakers’ heads. The error rate of finding the boundary
between two people was 0.4%, where an error occured when the es-
timated boundary did not cleanly separate the bounding boxes of the
two people. The error rate for dividing the head and hands was 0.5%.

Higher resolution features extracted from the 4 individual close-
view cameras (labelled asCloseHead) are included for comparison.
Going from CloseHeadto Halves leads to a decrease of 3.5% in
performance in absolute terms. As expected, separating the hand and
motion withMaxHH performed better, leading to only a 0.5% drop
in performance, despite a reduction in resolution between the side
view and close-view cameras. TheHand feature performed worst
but theHeadfeature performed well compared to usingMaxHH.

For the basicThres models, we selected a threshold so that
the precision and recall were approximately equal. We compare
with both Head and MaxHH features. There is a significant im-
provement in performance when usingMaxHH features but overall
theThres method performed worse than the unsupervised method.
When HMM is used, the performance increases considerably but
MaxHH still performs better thanHead. When theFull model is
used, the performance increases again and but now theHeadfeature
performs a bit better. Closer inspection of the results reveals that the



P R F
Unsupervised Hands 41.32 52.6 41.85

Head 51.87 49.5 48.38
MaxHH 50.72 50 48.49
Halves 48.57 49.97 46.51
CloseHead 58.22 45.9 49.02

Supervised Thres Head 45.18 36.15 38.14
Thres MaxHH 43.22 41.93 41.00
HMM(MaxHH) 61.64 54.36 54.83
Full(MaxHH) 62.24 54.54 55.19
HMM(Head) 62.99 53.23 54.45
Full(Head) 63.36 54.74 55.92

Audio-only Audio1 71.26 60.87 63.38
Audio4 55.43 80.21 81.62

Table 1. Performance as precision (P), recall (R) and F-measure (F).

Headfeature did not perform consistently better thanMaxHH. Peo-
ple who used their hands more for speaking than other activities such
as writing occursed in meetings whereMaxHH performed better.

We compare our video-only methods with two different audio-
only methods. The first is the speech/non-speech detector proposed
by Dines et al. [18] that assumed IHM conditions. This method
is referred to asAudio4. The other is a more challenging scenario
where only a single microphone from the array is used but the num-
ber of speakers is known beforehand. We use the “NoFM” method
described in [19] and is referred to asAudio1. The diarization
was performed on each 5-minute meeting segment. Using 5-minute
segments is challenging for diarization systems since each speaker
has little time in which representative speaker models can be accu-
mulated. There is typically an improvement in performance when
longer conversations are used.

The results show that the diarization results improve on video-
only approaches withAudio4 performing the best. On closer in-
spection, there are a few meetings segments where the theFull
model out-performed theAudio1 method by almost20% in abso-
lute terms. If longer meeting segments are used, the clustering per-
formance forAudio1 will improve so our experiments represent the
worst-case scenario and show that in the presence of short data, vi-
sual features may be a good substitute for audio-only methods.

6. CONCLUSION
Our results show that it is possible to estimate speech activity from
low resolution visual features using both supervised and unsuper-
vised methods. We have also demonstrated that using the context of
the meeting to estimate who is speaking improves the overall per-
formance and stability of the estimates. We have shown that both
the visual activity of the head and hands can contribute to estimates
of speaking status. The video-only methods do not out-perform the
audio-only methods but our results show that it could be a reasonable
substitute if periods of audio data are missing or impractical to ex-
tract. In terms of on-line real-time systems, our unsupervised model
is already able to work on-line but for theFull model, further work
is needed. It would be interesting to investigate the effect on estima-
tion performance of behavioural constructs such as dominance when
using the noisier estimates of speaking status.
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