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ABSTRACT
We address the problem of recognizing, in dynamic meetings in
which people do not remain seated all the time, the visual focus of
attention (VFOA) of seated people from their head pose and contex-
tual activity cues. We propose a model that comprises the VFOA of
a meeting participant as the hidden state, and his head pose as the
observation. To account for the presence of moving visual targets
due to the dynamic nature of the meeting, the locations of the visual
targets are used as an input variables to the head pose observation
model. Contextual information is introduced in the VFOA dynam-
ics through a slide activity variable and speaking or visual activity
variables that relate people’s focus to the meeting activity context.
The main novelty of this paper is the introduction of visual activity
context for FOA recognition to account for the correlation between
a person’s focus and the other people’s gestures, hand and body mo-
tions. We evaluate our model on a large dataset of 5 hours. Our
results show that, for VFOA estimation in meetings, visual activity
contextual information can be as effective as speaking context.

Index Terms— visual focus of attention, head pose, contextual
information

1. INTRODUCTION

Meetings are an important aspect of human daily life. In companies
most of the important decisions are taken during meetings. Nowa-
days due to the ubiquitous presence of recording devices such as mi-
crophones and cameras, researchers are investigating techniques for
automatic meeting analysis. Research about automatic meeting anal-
ysis will allow the design of efficient tools for computer-enhanced
human-to-human interaction.

Analyzing meetings requires the ability to understand the be-
haviors that are exhibited during human interaction. Among these
behaviors, gaze plays an important role. In conversations, speakers
use their gaze to specify their addressees. Listeners use their gaze to
show their interest, and to request speaking turns [1]. Motivated by
gaze shift studies that suggest very strong correlations between the
gaze direction, defining people’s visual focus of attention (VFOA),
and their head pose, research has been conducted to use computer vi-
sion techniques to estimate VFOA from head pose in the case where
gaze estimation directly from the eyes is impossible [2, 3, 4]. Yet,
most of the studies about VFOA recognition have concentrated on
situations where the people are seated during the entire meeting.

In general real life situations, participants do not remain at their
seats during the entire meeting. They can stand up to use the white
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board or make presentations. Similar to Voit and Stiefelhagen [5],
we denominate meetings where people move away from their seats
dynamic meetings. VFOA estimation in dynamic meetings is more
challenging than in the static meetings where people remain seated.
The moving people, who have to be localized, increase the potential
ambiguities between visual targets.

Investigations about VFOA recognition in the static meetings
have shown that the use of contextual information such as speaking
patterns or projection screen activity, have led to significant perfor-
mance improvements [2, 6]. In dynamics meeting the use of context
should also be of interest in reducing ambiguities between visual tar-
gets defined by similar head poses.

In this paper, we propose a probabilistic model for VFOA recog-
nition from head pose in dynamics meetings making use of the dy-
namics of social context. Inspired by research about the strong cor-
relation between a speaker’s gestures and his speech ([7, 8]), we in-
troduce the notion of conversation visual activity context, which ac-
counts for people’s tendencies to focus at the other persons because
of their gestures or body motions. We compare VFOA recognition
using visual activity context to the more classical speaking context
[2, 6]. Our results show that visual activity context can be as ef-
fective as speaking context. Thus, allowing our system to deal with
cases when only the video modality is available.

The remaining of this paper is organized as follows. Section 2
describes the task we address and the dataset we use for evaluation.
In Section 3 we give the audio-visual features we use in the VFOA
model. In Section 4, we present the model we propose. Section 5
describes the experiments we conducted to evaluate our model. Fi-
nally, in Section 6 we give conclusions.

2. DATASET AND TASK

Dataset description: The dataset we use for our study consist of 12
meetings of the AMI corpus1, involving 4 people with real behav-
iors. They take notes, use laptops, make use of a white board, and a
projection screen for presentations (see Fig.1). Twenty different per-
sons were involved in the recordings. The meeting durations ranged
from 15min to 35min, for a total of 5 hours. This makes this database
the longest among those used for VFOA recognition studies [2, 3, 5].
With respect to the dynamic aspect of the AMI Corpus meeting, 23%
of the time there was a person standing to make a presentation.
Task: Our goal is to estimate the VFOA of seated people in meet-
ings. A person’s focus can be any element of a finite set of visual
targets that the person considers as interesting. For a meeting par-
ticipant seated at seat k, we have identified the set of visual tar-
gets of interest Fk as: the 3 other participants Pk (e.g. for seat

1 The dataset is available at http://corpus.amiproject.org
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Fig. 1. Evaluation data recording setup: four people are having a
meeting in a room equipped with a projection screen and a white
board. Sometimes During the meeting, a person makes a presenta-
tion either seated or standing at the presentation areas A, B or C.

visual targets people table board screen unfocused
proportion (%) 38.4 29.8 2.7 23.9 5.2

Table 1. Distribution of VFOA labels.

1, P1 ={seat2,seat3,seat4}), as well as a set of 4 other visual targets
O ={table, white board, projection screen, unfocused }. The latter
target (unfocused) is used when the person is not visually focusing
on any of the previously cited targets.
Dataset analysis: The meeting participants’ VFOA were annotated
based on the set of VFOA labels defined above. Tab.1 gives the
VFOA statistics, where we have grouped the VFOA labels corre-
sponding to participants into a single label ‘people’. Looking at
people only represents 39% of the data, while looking at the ta-
ble or screen represents more than 50% of the VFOA proportion.
These statistics show that classical face to face conversation dynam-
ics where people mainly look at the speakers did not hold. Artifacts
such as the table and the projection screen play an important role that
has to be taken into account to understand the conversation dynamics
in our meeting scenario.

3. MODEL OBSERVATIONS

The VFOA model we propose makes use of image and audio based
observations: people’s head locations and poses, speaking status
(speaking or not), and visual activity status (visually active or not).

3.1. Head localization and pose

To estimate people’s head location and pose we rely on a Bayesian
formulation of the tracking problem solved through particle filtering
techniques [9]. We applied our tracking method to track people when
they are visible in the side cameras (see Fig.2a). At each time t, the
tracker outputs the head locations in the image plane and the head
poses θt (characterized by a pan and tilt angle) of people visible in
the side view cameras.

3.2. Audio features

The audio features are extracted from close-talk microphones at-
tached to each meeting participant. At each time t the speaking
energy of participant k is thresholded to give his speaking status sk

t

which is 1 if participant k is speaking and 0 otherwise. Fig.3a) shows
a sample sequence of the four person speaking statuses.

3.3. Motion features

As motion features, we used the thresholded absolute pixel differ-
ences between consecutive image frames. We denominate the mo-
tion energy of an image area, the proportion of the motion features

a) b)

Fig. 2. a: Head location and pose tracking from one side camera
view. b: Areas A, B,C in the central camera view for motion energy
computation used for standing people localization.

a) b)

Fig. 3. a) Speaking statuses and b) motion statuses of the 4 meeting
participants extracted from speaking and motion energy. Note the
similarities between the speaking and motion patterns.

in that area. We made three uses of the motion energy: we detected
slide changes, we localized people standing in the presentation areas,
and finally we computed people’s visual activity statuses.
Slide change detection: Slide changes correspond to a temporally
localized peaks of the motion energy of the image area correspond-
ing to the projection screen. To detect the slide changes we thresh-
olded the motion energy of the projection screen image area. Given
the slide change instant at t, we built a slide activity variable at that
stores the time that has elapsed since the last slide change.
Localization of people: People are tracked from the side view cam-
era when they are seated. The location xk

t of a participant k is a
discrete index which takes four values: seat k when he is seated, or
the center of one the presentation areas A, B or C showed in Fig.1
and Fig.2b) when he is standing. This location is estimated by as-
suming that when people are away from their seats they are standing
in one of the area A, B or C. Thus, when they are away from their
seats to make presentations, they are localized from the central cam-
era view using the motion energy. In the central view images, the
motion energy corresponding to each of the standing area is com-
puted and the location of the person standing is estimated as the area
with the highest energy or his previous standing location when there
is no energy is none of the standing area.
Visual activity statuses: To measure the visual activity of a person,
we define the visual activity status vk

t which is 1 when the person
is visually active and 0 otherwise. When a person is visually active
there is high motion energy at his location on the image. Given the
four meeting participants’ location, we estimate their visual activity
statuses vt by thresholding the motion energy corresponding to their
locations. Fig.3b) shows a sample sequence of the four meeting par-
ticipants activity statuses. The similarities between the speaking and
the visual activity patterns in Fig.3 show that speaking and visual
activities are strongly correlated.

4. VFOA MODELLING

The hidden state we want to estimate is the focus of a meeting partic-
ipant k denoted fk

t . His head pose θk
t is used as the observation for

the hidden state. The people’s locations xt = (x1
t , x

2
t , x

3
t , x

4
t ) are

used as input variables defining the head pose observation model.



Fig. 4. VFOA graphical models.

A slide screen activity variable at, and an input variable ut which,
depending on the experimental conditions, is either people’s speak-
ing statuses or their visual activity statuses are used as the input
variables driving the hidden state dynamics. According to indepen-
dence assumptions reflected by graphical model displayed in Fig.4,
the variables of our model have their joint posterior density function
p(fk

1:T , λ|θk
1:T , u1:T , a1:T , x1:T ) defined as:

p(λ)

TY
t=1

p(θk
t |fk

t , xt)p(f
k
t |fk

t−1, ut, at) (1)

where λ is the vector of model parameters, p(λ) is a prior distribu-
tion on the model parameters, p(θk

t |fk
t , xt) is the observation likeli-

hood relating the observed head poses to the VFOA states given the
visual targets locations, and p(fk

t |fk
t−1, ut, at) is the state dynamics

modeling the temporal VFOA states evolution subject to the screen
activity and the speaking or the visual activities.

4.1. The observation models

When person k focuses at another person j, we defined the observa-
tion model as a Gaussian distribution:

p(θk
t |fk

t = j, xt) = N (θk
t ;µ

k,x
j
t
,Σj

k) (2)

where µ
k,x

j
t

is the Gaussian mean which models the mean head pose

when the person at seat k looks at person j located at position xj
t , and

Σj
k is the covariance of the Gaussian. If the visual target j is an ob-

ject (table, white board, projection), the observation model is defined
as a Gaussian distribution p(θk

t |fk
t = j, xt) = N (θk

t ;µk,j ,Σ
j
k).

For the unfocused target, p(θk
t |fk

t = unfocused , xt) is modeled as
a uniform distribution.

4.2. The state Dynamics

We define the state dynamical model as follows:

p(fk
t |fk

t−1, at, ut) ∝ p(fk
t |ft−1)p(fk

t |at, ut) (3)

where p(fk
t |fk

t−1) models the temporal transitions between focus
states, p(fk

t |at, ut) models the probability to observe a VFOA state
given the slide activity, and the speaking or the motion activities.
VFOA temporal transitions: The VFOA temporal transition
p(fk

t |fk
t−1) role is to enforce temporal smoothness on the state

sequence. It is modeled as a transition table with a high probability
to remain in the same state and the remaining of the probability
uniformly spread on the other states.
Contextual prior dynamics: It is well known in social sciences that
in meetings, people’s attention is attracted by activities such as a per-
son speaking, a person gesturing, or slide changes on the projection
screen [1]. Thus, we modeled the VFOA contextual prior as a prob-
ability table p(fk

t |ut, at) = p(fk
t |Uk

t , at) where Uk
t denotes the set

of orally or visually active persons at time t which are not person k,

a) b)

Fig. 5. Probabilities of focusing at visual targets given the time
elapsed since the last slide change. In a) the probability of look-
ing at a person is spread into looking at a speaker (red) or a listener
(green). In b), the probability of looking at a person is spread be-
tween looking at a person visually active (red) or static (green).

and we further assumed that the VFOA of person k is independent
of whether k is active or not. Using training data we learned the
probability table p(fk

t |Uk
t , at). Six cases are considered. The first

case is p(fk
t = l|Uk

t , at) where l is an active person (l ∈ Uk
t ). The

second case corresponds to when l is a non-active person. The other
4 cases correspond to when l is not a person (table, white board, pro-
jection screen, unfocused). Fig.5 displays these probability tables
when activity corresponds to speaking (Fig.5a) and when activity
corresponds to moving (Fig.5b). These figures show that right after
a slide change, the probability of looking at the projection screen is
high and gradually decreases. Inversely the probability of looking
at the people increases. The probability of looking at an active per-
son, either speaking or visually active, is higher than the probability
of looking at non-active people. Also, the probability of looking
at a person speaking is higher than the probability of looking at a
visually active person, indicating that there is a higher correlation
between gaze and speaking behaviours than between gaze and vi-
sual activity behaviours. Finally, in Fig. 5 the probability of looking
at the table can be considered uniform over the meetings.

4.3. Prior on the model parameters and model inference

Prior on the model parameters: The prior p(λ) is a probability
distribution over the model parameter values. In this paper we are
only interested in the estimation of the values of the Gaussian means
defining the observation models. This is motivated by the fact that
the head pose defining gazing behaviours is more subject to varia-
tions due to people’s personal way of gazing at visual targets [10].
We define the prior over each Gaussian mean as the Gaussian distri-
bution p(µ

k,x
j
k
|τ,m

k,x
j
k
,Σj

k):

∝ exp−τ(µ
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with mean m
k,x

j
t

and covariance matrix τΣj
k. The cognitive gaze

model presented in [4], that relates people’s gaze direction to their
head pose can be used to predict m

k,x
j
t
. The cognitive model as-

sumes that a person k gazes at the direction mgaze

k,x
j
t

through a head

rotation m
k,x

j
t

and eye in head rotation. The head rotation relates
to the gaze direction mgaze

k,x
j
t

through the linear relation m
k,x

j
t

=

κmgaze

k,x
j
t

where the parameter κ specifies the head pose contribution

to the gaze rotation. The covariance matrix τΣj
k is composed of two

parameters, a scale factor τ > 0 that is used to drive the parameter
adaptation, Σj

k is the covariance matrix defined in Section 4.1.
Model Inference: Inference is conducted in two steps. First we
apply an unsupervised maximum a posteriori (MAP) adaptation to



estimate the Gaussian means. Then, given the optimal model pa-
rameters, we use Viterbi decoding to find the optimal sequence of
hidden states. Given a non-annotated test sequence, unsupervised
(MAP) adaptation consists in finding the parameters µk,xl and µk,j

that allow for an optimal fit of the sequence by maximizing the pos-
terior distribution in Eq.1. MAP adaptation can be conducted using
an expectation-maximization (EM) algorithm [10].

5. RESULTS

We evaluate our VFOA model using the dataset described in Sec-
tion 2. As performance measure we use the frame recognition rate
(FRR) which is the percentage of video frames for which the VFOA
is correctly classified. As an evaluation protocol, we adopted a leave
one out approach: in turn, one meeting is left aside as test data, the
remaining 11 meetings are used to learn the contextual priors.

Tab. 2 gives the results over the entire dataset. This table shows
that the use of contextual activity is always beneficial. The best FRR
is achieved when slide and visual activities are used as contextual
cues which achieves an average (over 12 meetings, 4 seats) FRR of
53.2%. Using a pairwise T-test significance test, we tested whether
the performances achieved by the method based on slide and speak-
ing context is different from the results achieved by the other meth-
ods. The T-tests show that, at a p-values of 1% the performances of
the methods based on speaking and visual activity context are not
significantly different, but are significantly better than the other two
methods (using pose only, or with slide context only). The corre-
lation between speaking activity and visual activity only partly ex-
plains the similarities between the performances of the two contex-
tual cues. On the overall dataset, the percentage of time a person
speaking is visually active is 66%. This shows that visual activity
captures a significant proportion of speaking activity. However, the
percentage of time a person visually active is speaking which is 47%.
This suggest that people may focus at a person who is not speaking
but is visually active, for example when a listener is giving visual
feedback as a head gesture.

Tab.2 also gives the VFOA recognition performances for the
evaluation dataset split into static meetings (4 recordings) and dy-
namics meetings (8 recordings). For all experimental conditions the
recognition rates are higher on the static meetings than on the dy-
namic meetings. The best performance of 55.2% over the static
meetings is achieved when using slide and speaking context. This
difference can be explained mainly by two factors. The first factor
is that static meetings are more conversational. Thus, the speaking
context is very informative. The second factor is that the VFOA
recognition in the dynamic meetings is more challenging because
the person standing either in front of the white board or projection
screen increases the potential confusions between the visual targets:
many visual targets will be defined by very similar head poses. The
method based on slide and visual context achieves a FRR of 54.5%
over the static meetings and 52.5% over the dynamics meetings. In
dynamic meetings, visual activity context slightly outperforms the
speaking context specially for the people seated at seat 4.

6. CONCLUSIONS

In this paper we proposed a model for VFOA recognition from head
pose and multi-modal activity context. We introduced the concept
of visual activity context for VFOA recognition which relates a per-
son gazing behaviors to the other people’s visual activities (gestures,
hand and body motions). Our model, evaluated on a large database,

experimental setup seat1 seat2 seat3 seat4 mean

overall

slide-speaking 56.2 58.2 49 47.5 52.7
slide-motion 56.1 56.9 49.3 50.3 53.2
slide 53.7 55.2 43.5 48.6 50.2
pose only 52.1 53.9 41.3 45.6 48.2

static

slide-speaking 60.5 59.5 49.1 51.7 55.2
slide-motion 58.8 58.4 50.4 50.3 54.5
slide 57.6 55.5 41.1 48.1 50.6
pose only 58.2 56.7 40.1 44.7 49.9

dynamic

slide-speaking 54.1 57.5 49 45.5 51.5
slide-motion 54.7 56.2 48.8 50.3 52.5
slide 51.8 55 44.7 48.9 50.1
pose only 49.1 52.5 41.9 46.1 47.4

Table 2. VFOA recognition performance over static and dynamic
meetings.

achieved good performances for such a challenging task. In this pa-
per we show that for VFOA recognition in meetings, the visual ac-
tivity context we propose can be as efficient as the classical speaking
context. This is an interesting finding knowing that in some experi-
mental conditions such as outdoor scenes, visual activities might be
easier to estimate than speaking activities. However in the situation
both speaking and visual activity context are available, it might be
worth investigating their combination into a single activity context
to exploit the complementary information they convey.
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